BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 8439293)

  • 21. Interaction of phloretin with the anion transport protein of the red blood cell membrane.
    Forman SA; Verkman AS; Dix JA; Solomon AK
    Biochim Biophys Acta; 1982 Aug; 689(3):531-8. PubMed ID: 7126563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon.
    Mann GE; Zlokovic BV; Yudilevich DL
    Biochim Biophys Acta; 1985 Oct; 819(2):241-8. PubMed ID: 4041458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monocarboxylate-uptake kinetics in perfused rat heart.
    Dennis SC; Kohn MC; Slegowski MB; Anderson GJ; Garfinkel D
    Adv Myocardiol; 1985; 6():259-72. PubMed ID: 3922026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells.
    Dimmer KS; Friedrich B; Lang F; Deitmer JW; Bröer S
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):219-27. PubMed ID: 10926847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lactate-proton co-transport and its contribution to interstitial acidification during hypoxia in isolated rat spinal roots.
    Schneider U; Poole RC; Halestrap AP; Grafe P
    Neuroscience; 1993 Apr; 53(4):1153-62. PubMed ID: 8389429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relation between red cell anion exchange and water transport.
    Yoon SC; Toon MR; Solomon AK
    Biochim Biophys Acta; 1984 Dec; 778(2):385-9. PubMed ID: 6548645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial pyruvate transport in working guinea-pig heart. Work-related vs. carrier-mediated control of pyruvate oxidation.
    Bünger R; Mallet RT
    Biochim Biophys Acta; 1993 Sep; 1151(2):223-36. PubMed ID: 8104034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of water and urea transport in human red cells: effects of pH and phloretin.
    Toon MR; Solomon AK
    J Membr Biol; 1987; 99(3):157-64. PubMed ID: 3694670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adenosine effect on lactate and pyruvate production in the hypoxic guinea pig heart.
    Gutierrez-Juárez R; Madrid-Marina V; Piña E
    Int J Biochem; 1993 May; 25(5):725-9. PubMed ID: 8349014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. L(+)-lactate transport in perfused rat skeletal muscle: kinetic characteristics and sensitivity to pH and transport inhibitors.
    Watt PW; MacLennan PA; Hundal HS; Kuret CM; Rennie MJ
    Biochim Biophys Acta; 1988 Oct; 944(2):213-22. PubMed ID: 2846055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The rôle of mitochondrial pyruvate transport in the stimulation by glucagon and phenylephrine of gluconeogenesis from L-lactate in isolated rat hepatocytes.
    Thomas AP; Halestrap AP
    Biochem J; 1981 Sep; 198(3):551-60. PubMed ID: 7326022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle.
    Manning Fox JE; Meredith D; Halestrap AP
    J Physiol; 2000 Dec; 529 Pt 2(Pt 2):285-93. PubMed ID: 11101640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The specificity and metabolic implications of the inhibition of pyruvate transport in isolated mitochondria and intact tissue preparations by alpha-Cyano-4-hydroxycinnamate and related compounds.
    Halestrap AP; Denton RM
    Biochem J; 1975 Apr; 148(1):97-106. PubMed ID: 1171687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lactate transport in skeletal muscle cells: uptake in L6 myoblasts.
    Beaudry M; Duvallet A; Thieulart L; el Abida K; Rieu M
    Acta Physiol Scand; 1991 Mar; 141(3):379-81. PubMed ID: 1858508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane polypeptide in rabbit erythrocytes associated with the inhibition of L-lactate transport by a synthetic anhydride of lactic acid.
    Donovan JA; Jennings ML
    Biochemistry; 1985 Jan; 24(3):561-4. PubMed ID: 2986679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of lactate and pyruvate transport in cultured rat myotubes.
    von Grumbckow L; Elsner P; Hellsten Y; Quistorff B; Juel C
    Biochim Biophys Acta; 1999 Mar; 1417(2):267-75. PubMed ID: 10082802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stilbene disulphonates inhibit apparently separate chloride transporters in skeletal muscle of Rana temporaria.
    Hansen M; Skydsgaard JM
    J Physiol; 1992 Mar; 448():383-95. PubMed ID: 1593471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitivity of rat renal luminal and contraluminal sulfate transport systems to DIDS.
    Bästlein C; Burckhardt G
    Am J Physiol; 1986 Feb; 250(2 Pt 2):F226-34. PubMed ID: 3946600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of chloride self-exchange with stilbene disulphonates in depolarized skeletal muscle of Rana temporaria.
    Skydsgaard JM
    J Physiol; 1988 Mar; 397():433-47. PubMed ID: 3261796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.