These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 8439293)

  • 121. The activity of pyruvate carrier in a reconstituted system: substrate specificity and inhibitor sensitivity.
    Nałecz KA; Kamińska J; Nałecz MJ; Azzi A
    Arch Biochem Biophys; 1992 Aug; 297(1):162-8. PubMed ID: 1637179
    [TBL] [Abstract][Full Text] [Related]  

  • 122. Selective inhibition of glial versus neuronal uptake of L-glutamic acid by SITS.
    Waniewski RA; Martin DL
    Brain Res; 1983 Jun; 268(2):390-4. PubMed ID: 6871692
    [TBL] [Abstract][Full Text] [Related]  

  • 123. A rabbit erythrocyte membrane protein associated with L-lactate transport.
    Jennings ML; Adams-Lackey M
    J Biol Chem; 1982 Nov; 257(21):12866-71. PubMed ID: 7130184
    [TBL] [Abstract][Full Text] [Related]  

  • 124. Some factors affecting phosphate transport in a perfused rat heart preparation.
    Medina G; Illingworth J
    Biochem J; 1980 May; 188(2):297-11. PubMed ID: 7396864
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Studies on the disposition of Li+ in the guinea-pig and rat.
    Murray N; Hewick D; Balfour D
    Psychopharmacology (Berl); 1981; 74(4):374-8. PubMed ID: 6270717
    [TBL] [Abstract][Full Text] [Related]  

  • 126. L(+)-lactate binding to a protein in rat skeletal muscle plasma membranes.
    McCullagh KJ; Bonen A
    Can J Appl Physiol; 1995 Mar; 20(1):112-24. PubMed ID: 7742767
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Pyruvate flux into resealed ghosts from human erythrocytes.
    Rice WR; Steck TL
    Biochim Biophys Acta; 1976 Apr; 433(1):39-53. PubMed ID: 4147
    [TBL] [Abstract][Full Text] [Related]  

  • 128. A mitochondrial monocarboxylate transporter in rat liver and heart and its possible function in cell control.
    Mowbray J
    Biochem J; 1975 Apr; 148(1):41-7. PubMed ID: 1156399
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation.
    Casal M; Leão C
    Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664
    [TBL] [Abstract][Full Text] [Related]  

  • 130. The monocarboxylate carrier from bovine heart mitochondria: partial purification and its substrate-transporting properties in a reconstituted system.
    Nałecz KA; Bolli R; Wojtczak L; Azzi A
    Biochim Biophys Acta; 1986 Aug; 851(1):29-37. PubMed ID: 3730373
    [TBL] [Abstract][Full Text] [Related]  

  • 131. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. I. Transport kinetics of D-lactate, Na+-dependence, pH-dependence and effect of inhibitors.
    Ullrich KJ; Rumrich G; Klöss S
    Pflugers Arch; 1982 Nov; 395(3):212-9. PubMed ID: 7155794
    [No Abstract]   [Full Text] [Related]  

  • 132. Facilitated diffusion of lactic acid in the guinea-pig placenta.
    Moll W; Girard H; Gros G
    Pflugers Arch; 1980 Jun; 385(3):229-38. PubMed ID: 6773028
    [TBL] [Abstract][Full Text] [Related]  

  • 133. The mechanism of lactate transport in human erythrocytes.
    Dubinsky WP; Racker E
    J Membr Biol; 1978 Dec; 44(1):25-36. PubMed ID: 32398
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Phloretin keto-enol tautomerism and inhibition of glucose transport in human erythrocytes (including effects of phloretin on anion transport).
    Fuhrmann GF; Dernedde S; Frenking G
    Biochim Biophys Acta; 1992 Sep; 1110(1):105-11. PubMed ID: 1390829
    [TBL] [Abstract][Full Text] [Related]  

  • 135. Possible involvement of alanine and pyruvate in the regulation of glucose transport in heart muscle cells.
    Fischer Y; Rose H; Kammermeier H
    FEBS Lett; 1990 Nov; 274(1-2):127-30. PubMed ID: 2123803
    [TBL] [Abstract][Full Text] [Related]  

  • 136. L(+)-Lactate binding to preparations of rat hepatocyte plasma membranes.
    Welch SG; Metcalfe HK; Monson JP; Cohen RD; Henderson RM; Iles RA
    J Biol Chem; 1984 Dec; 259(24):15264-71. PubMed ID: 6511793
    [TBL] [Abstract][Full Text] [Related]  

  • 137. Conversion of C14 labeled propionate, lactate, and pyruvate to acetyl groups in the rat.
    SHREEVE WW
    J Biol Chem; 1952 Mar; 195(1):1-10. PubMed ID: 14938348
    [No Abstract]   [Full Text] [Related]  

  • 138. Rate equations and kinetics of uptake of alpha-aminoisobutyric acid and gamma-aminobutyric acid by mouse cerebrum slices incubated in media containing L(+)-lactate or a mixture of succinate, L-malate, and pyruvate as the energy source.
    Cohen SR
    J Neurochem; 1985 Feb; 44(2):455-64. PubMed ID: 3965619
    [TBL] [Abstract][Full Text] [Related]  

  • 139. Inhibition of lactate transport in Ehrlich ascites tumor cells and human erythrocytes by a synthetic anhydride of lactic acid.
    Johnson JH; Belt JA; Dubinsky WP; Zimniak A; Racker E
    Biochemistry; 1980 Aug; 19(16):3836-40. PubMed ID: 7407072
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Block of acid secretion by amytal and its partial reversal by menadione with ascorbate in the gastric mucosa of the guinea-pig.
    Hayashi K; Yamada K; Ohe K; Miyoshi A; Kawasaki T
    Biochim Biophys Acta; 1980 Mar; 596(3):414-9. PubMed ID: 7362821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.