These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 8439293)

  • 141. Characterization of a mitochondrial transport system for branched chain alpha-keto acids.
    Hutson SM; Rannels SL
    J Biol Chem; 1985 Nov; 260(26):14189-93. PubMed ID: 4055776
    [TBL] [Abstract][Full Text] [Related]  

  • 142. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae.
    Casal M; Cardoso H; Leao C
    Microbiology (Reading); 1996 Jun; 142 ( Pt 6)():1385-1390. PubMed ID: 8704978
    [TBL] [Abstract][Full Text] [Related]  

  • 143. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat.
    Johnston ME; Geiger JD
    Neurochem Res; 1990 Sep; 15(9):911-5. PubMed ID: 2274101
    [TBL] [Abstract][Full Text] [Related]  

  • 144. Extraction, partial purification and functional reconstitution of two mitochondrial carriers transporting keto acids: 2-oxoglutarate and pyruvate.
    Nałecz MJ; Nałecz KA; Broger C; Bolli R; Wojtczak L; Azzi A
    FEBS Lett; 1986 Feb; 196(2):331-6. PubMed ID: 3949005
    [TBL] [Abstract][Full Text] [Related]  

  • 145. [Regulation of pyruvate dehydrogenase activity and dynamics of the isolated perfused guinea pig heart in thiamine deficiency].
    Gessner B; Müller-Ruchholtz ER; Reinauer H
    Pflugers Arch; 1972; 334(4):327-44. PubMed ID: 4672714
    [No Abstract]   [Full Text] [Related]  

  • 146. Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae.
    Cássio F; Leão C; van Uden N
    Appl Environ Microbiol; 1987 Mar; 53(3):509-13. PubMed ID: 3034152
    [TBL] [Abstract][Full Text] [Related]  

  • 147. The metabolism of lactate.
    Veech RL
    NMR Biomed; 1991 Apr; 4(2):53-8. PubMed ID: 1859786
    [TBL] [Abstract][Full Text] [Related]  

  • 148. A synthesis of acylphosphonic acids and of 1-aminoalkylphosphonic acids: the action of pyruvate dehydrogenase and lactate dehydrogenase on acetylphosphonic acid.
    Dixon HB; Giddens RA; Harrison RA; Henderson CE; Norris WE; Parker DM; Perham RN; Slater P; Sparkes MJ
    J Enzyme Inhib; 1991; 5(2):111-7. PubMed ID: 1669440
    [TBL] [Abstract][Full Text] [Related]  

  • 149. Contraction and metabolic activity of electrically stimulated cardiac myocytes from adult rats.
    Rose H; Kammermeier H
    Pflugers Arch; 1986 Jul; 407(1):116-8. PubMed ID: 3737377
    [TBL] [Abstract][Full Text] [Related]  

  • 150. Actions of amiodarone on mitochondrial ATPase and lactate dehydrogenase activities in guinea pig heart preparations.
    Dzimiri N; Almotrefi AA
    Eur J Pharmacol; 1993 Sep; 242(2):113-8. PubMed ID: 8253107
    [TBL] [Abstract][Full Text] [Related]  

  • 151. Identification of the protein responsible for pyruvate transport into rat liver and heart mitochondria by specific labelling with [3H]N-phenylmaleimide.
    Thomas AP; Halestrap AP
    Biochem J; 1981 May; 196(2):471-9. PubMed ID: 7316989
    [TBL] [Abstract][Full Text] [Related]  

  • 152. Carbohydrate metabolism of malarial parasites--I. Metabolism of lactate in Plasmodium knowlesi infected monkey erythrocytes.
    Ali SN; Fletcher KA
    Comp Biochem Physiol B; 1985; 80(4):725-9. PubMed ID: 3995917
    [TBL] [Abstract][Full Text] [Related]  

  • 153. Mechanisms and regulation of lactate, pyruvate and ketone body transport across the plasma membrane of mammalian cells and their metabolic consequences.
    Halestrap AP; Poole RC; Cranmer SL
    Biochem Soc Trans; 1990 Dec; 18(6):1132-5. PubMed ID: 2088823
    [No Abstract]   [Full Text] [Related]  

  • 154. Effect of concurrent exercise and physostigmine on lactate and pyruvate in plasma, muscle, and brain tissue of rats.
    Buckenmeyer PJ; Babu SR; Knowlton RG; Somani SM
    Pharmacol Biochem Behav; 1994 Apr; 47(4):779-88. PubMed ID: 8029245
    [TBL] [Abstract][Full Text] [Related]  

  • 155. Chloride-independent transport of pyruvate and lactate across the erythrocyte membrane [proceedings].
    Leeks DR; Halestrap AP
    Biochem Soc Trans; 1978; 6(6):1363-6. PubMed ID: 744429
    [No Abstract]   [Full Text] [Related]  

  • 156. Minimal concentrations of metabolic substrates capable of supporting cochlear potentials.
    Kambayashi J; Kobayashi T; Marcus NY; DeMott JE; Thalmann I; Thalmann R
    Hear Res; 1982 May; 7(1):105-14. PubMed ID: 7096214
    [TBL] [Abstract][Full Text] [Related]  

  • 157. Aerobic lactate synthesis by cardiac muscle.
    Strong P; Mullings R; Illingworth JA
    Eur J Biochem; 1979 Dec; 102(2):625-36. PubMed ID: 230966
    [TBL] [Abstract][Full Text] [Related]  

  • 158. Consumption and Metabolism of Extracellular Pyruvate by Cultured Rat Brain Astrocytes.
    Denker N; Harders AR; Arend C; Dringen R
    Neurochem Res; 2023 May; 48(5):1438-1454. PubMed ID: 36495387
    [TBL] [Abstract][Full Text] [Related]  

  • 159. The transport of D-glucose, L-glucose and D-mannose across the isolated guinea pig placenta.
    Schröder H; Leichtweiss HP; Madee W
    Pflugers Arch; 1975; 356(3):267-75. PubMed ID: 1171444
    [TBL] [Abstract][Full Text] [Related]  

  • 160. Properties of the branched-chain 2-hydroxy acid/2-oxo acid shuttle in mouse spermatozoa.
    Coronel CE; Gallina FG; Gerez de Burgos NM; Burgos C; Blanco A
    Biochem J; 1986 May; 235(3):853-8. PubMed ID: 2875710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.