BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 8439295)

  • 1. Temperature-induced membrane-lipid adaptation in Acanthamoeba castellanii.
    Jones AL; Hann AC; Harwood JL; Lloyd D
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):273-8. PubMed ID: 8439295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delta 6- and delta 12-desaturase activities and phosphatidic acid formation in microsomal preparations from the developing cotyledons of common borage (Borago officinalis).
    Griffiths G; Stobart AK; Stymne S
    Biochem J; 1988 Jun; 252(3):641-7. PubMed ID: 3421914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid induction of microsomal delta 12(omega 6)-desaturase activity in chilled Acanthamoeba castellanii.
    Jones AL; Lloyd D; Harwood JL
    Biochem J; 1993 Nov; 296 ( Pt 1)(Pt 1):183-8. PubMed ID: 8250841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-dependent changes in plasma-membrane lipid order and the phagocytotic activity of the amoeba Acanthamoeba castellanii are closely correlated.
    Avery SV; Lloyd D; Harwood JL
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):811-6. PubMed ID: 8554525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low temperature-induced adaptations in lipid metabolism and physiological function in Acanthamoeba castellanii cultures of different ages.
    Avery SV; Harwood JL; Lloyd D
    Biochem Soc Trans; 1994 Aug; 22(3):257S. PubMed ID: 7821519
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on thermal adaptation in Tetrahymena membrane lipids. Modification of positional distribution of phospholipid acyl chains in plasma membranes, mitochondria and microsomes.
    Maruyama H; Banno Y; Watanabe T; Nozawa Y
    Biochim Biophys Acta; 1982 May; 711(2):229-44. PubMed ID: 6807352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of plasma membrane physical state affects desaturase activity in rat lymphocytes.
    Garcia Zevallos M; Farkas T
    Arch Biochem Biophys; 1989 Jun; 271(2):546-52. PubMed ID: 2786374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid changes in individual membranes of Acanthamoeba castellanii during temperature adaptation.
    Jones AL; Lloyd D; Hann AC; Harwood JL
    Biochem Soc Trans; 1991 Aug; 19(3):318S. PubMed ID: 1783154
    [No Abstract]   [Full Text] [Related]  

  • 9. Dietary omega-3 fatty acids and cholesterol modify desaturase activities and fatty acyl constituents of rat intestinal brush border and microsomal membranes of diabetic rats.
    Keelan M; Thomson AB; Garg ML; Wierzbicki E; Wierzbicki AA; Clandinin MT
    Diabetes Res; 1994; 26(2):47-66. PubMed ID: 7554726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of gamma-linolenic acid in cotyledons and microsomal preparations of the developing seeds of common borage (Borago officinalis).
    Stymne S; Stobart AK
    Biochem J; 1986 Dec; 240(2):385-93. PubMed ID: 3028375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipids in total parenteral nutrition solutions differentially modify lipids in piglet intestinal brush border and microsomal membranes.
    van Aerde JE; Keelan M; Clandinin MT; Thomson AB
    JPEN J Parenter Enteral Nutr; 1997; 21(2):63-71. PubMed ID: 9084007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for an oleoyl phosphatidylcholine desaturase in microsomal preparations from cotyledons of safflower (Carthamus tinctorius) seed.
    Slack CR; Roughan PG; Browse J
    Biochem J; 1979 Jun; 179(3):649-56. PubMed ID: 475773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on thermal adaptation in Tetrahymena membrane lipids. Positional distribution of fatty acid in diacyl- and alkyl-acyl-phosphatidylcholines and -(2-aminoethyl)phosphonolipids from cells grown at different temperatures.
    Watanabe T; Fukushima H; Nozawa Y
    Biochim Biophys Acta; 1980 Oct; 620(1):133-41. PubMed ID: 7417476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging influence on delta-6-desaturase activity and fatty acid composition of rat liver microsomes.
    Bordoni A; Biagi PL; Turchetto E; Hrelia S
    Biochem Int; 1988 Dec; 17(6):1001-9. PubMed ID: 3245835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma and cellular zinc levels and membrane lipid composition in streptozotocin diabetic rats.
    Burke JP; Fenton MR
    Comp Biochem Physiol B; 1989; 93(2):409-12. PubMed ID: 2776432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition.
    Falcone DL; Ogas JP; Somerville CR
    BMC Plant Biol; 2004 Sep; 4():17. PubMed ID: 15377388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma and phagosome membranes of Acanthamoeba castellanii.
    Ulsamer AG; Wright PL; Wetzel MG; Korn ED
    J Cell Biol; 1971 Oct; 51(1):193-215. PubMed ID: 4329520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of changes in lysophosphatidylcholine metabolism and in microsomal membrane lipid composition to the pulmonary injury induced by oleic acid.
    Casals C; Herrera L; Garcia-Barreno P; Municio AM
    Biochim Biophys Acta; 1990 Apr; 1023(2):290-7. PubMed ID: 2328251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth-dependent changes of delta 12-desaturase activity and unsaturation of membrane fatty acids in Acanthamoeba castellanii.
    Avery SV; Lloyd D; Harwood JL
    Biochem Soc Trans; 1994 May; 22(2):200S. PubMed ID: 7958263
    [No Abstract]   [Full Text] [Related]  

  • 20. Age-dependent modifications in membrane lipids: lipid composition, fluidity and palmitoyl-CoA desaturase in Tetrahymena membranes.
    Nozawa Y; Kasai R; Kameyama Y; Ohki K
    Biochim Biophys Acta; 1980 Jun; 599(1):232-45. PubMed ID: 6104984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.