These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 8439296)

  • 41. Effects of monovalent cations and divalent metal ions on Escherichia coli selenophosphate synthetase.
    Kim IY; Stadtman TC
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7326-9. PubMed ID: 8041789
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zinc-thiolate intermediate in catalysis of methyl group transfer in Methanosarcina barkeri.
    Gencic S; LeClerc GM; Gorlatova N; Peariso K; Penner-Hahn JE; Grahame DA
    Biochemistry; 2001 Oct; 40(43):13068-78. PubMed ID: 11669645
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The genome of Plasmodium falciparum encodes an active delta-aminolevulinic acid dehydratase.
    Sato S; Wilson RJ
    Curr Genet; 2002 Mar; 40(6):391-8. PubMed ID: 11919678
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The in vitro effect of zinc and other metal ions on the activity of human erythrocyte aminolaevulinic acid dehydratase.
    Border EA; Cantrell AC; Kilroe-Smith TA
    Environ Res; 1976 Jun; 11(3):319-25. PubMed ID: 7448
    [No Abstract]   [Full Text] [Related]  

  • 45. Pseudomonas aeruginosa contains a novel type V porphobilinogen synthase with no required catalytic metal ions.
    Frankenberg N; Jahn D; Jaffe EK
    Biochemistry; 1999 Oct; 38(42):13976-82. PubMed ID: 10529244
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The metal ion dependence of phospholipase C from Bacillus cereus.
    Little C; Otnåss AB
    Biochim Biophys Acta; 1975 Jun; 391(2):326-33. PubMed ID: 807246
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of porphobilinogen synthase. Requirement of Zn2+ for enzyme activity.
    Bevan DR; Bodlaender P; Shemin D
    J Biol Chem; 1980 Mar; 255(5):2030-5. PubMed ID: 7354072
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer.
    Bollivar DW; Clauson C; Lighthall R; Forbes S; Kokona B; Fairman R; Kundrat L; Jaffe EK
    BMC Biochem; 2004 Nov; 5():17. PubMed ID: 15555082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe.
    Biswas R; Ledman DW; Fox RO; Altman S; Gopalan V
    J Mol Biol; 2000 Feb; 296(1):19-31. PubMed ID: 10656815
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Redox and metal-regulated oligomeric state for human porphobilinogen synthase activation.
    Sawada N; Nagahara N; Arisaka F; Mitsuoka K; Minami M
    Amino Acids; 2011 Jun; 41(1):173-80. PubMed ID: 20354739
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The mononuclear metal center of type-I dihydroorotase from Aquifex aeolicus.
    Edwards BF; Fernando R; Martin PD; Grimley E; Cordes M; Vaishnav A; Brunzelle JS; Evans HG; Evans DR
    BMC Biochem; 2013 Dec; 14():36. PubMed ID: 24314009
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal binding properties and secondary structure of the zinc-binding domain of Nup475.
    Worthington MT; Amann BT; Nathans D; Berg JM
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13754-9. PubMed ID: 8943007
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of zinc with special reference to the essential thiol groups in delta-aminolevulinic acid dehydratase of bovine liver.
    Tsukamoto I; Yoshinaga T; Sano S
    Biochim Biophys Acta; 1979 Sep; 570(1):167-78. PubMed ID: 486501
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel zinc-dependent D-serine dehydratase from Saccharomyces cerevisiae.
    Ito T; Hemmi H; Kataoka K; Mukai Y; Yoshimura T
    Biochem J; 2008 Jan; 409(2):399-406. PubMed ID: 17937657
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure of yeast 5-aminolaevulinic acid dehydratase complexed with the inhibitor 5-hydroxylaevulinic acid.
    Erskine PT; Coates L; Newbold R; Brindley AA; Stauffer F; Beaven GD; Gill R; Coker A; Wood SP; Warren MJ; Shoolingin-Jordan PM; Neier R; Cooper JB
    Acta Crystallogr D Biol Crystallogr; 2005 Sep; 61(Pt 9):1222-6. PubMed ID: 16131755
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Zinc and cysteine residues in the active site of bovine liver delta-aminolevulinic acid dehydratase.
    Tsukamoto I; Yoshinaga T; Sano S
    Int J Biochem; 1980; 12(5-6):751-6. PubMed ID: 7450129
    [No Abstract]   [Full Text] [Related]  

  • 57. Evidence for distinct locations for metal binding sites in two closely related class I tRNA synthetases.
    Schimmel P; Landro JA; Schmidt E
    J Biomol Struct Dyn; 1993 Dec; 11(3):571-81. PubMed ID: 8129874
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Purification, metal cofactor, N-terminal sequence and subunit composition of a 5-aminolevulinic acid dehydratase from the unicellular green alga Scenedesmus obliquus, mutant C-2A'.
    Stolz M; Dörnemann D
    Eur J Biochem; 1996 Mar; 236(2):600-8. PubMed ID: 8612634
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metal-binding site in a class I tRNA synthetase localized to a cysteine cluster inserted into nucleotide-binding fold.
    Landro JA; Schimmel P
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2261-5. PubMed ID: 8460131
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Affinity labelling of 5-aminolevulinic acid dehydratase with 2-bromo-3-(5-imidazolyl)propionic acid.
    Beyersmann D; Cox M
    Biochim Biophys Acta; 1984 Jul; 788(2):162-6. PubMed ID: 6430344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.