These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8439305)

  • 1. Anti-Candida activity of cispentacin: the active transport by amino acid permeases and possible mechanisms of action.
    Capobianco JO; Zakula D; Coen ML; Goldman RC
    Biochem Biophys Res Commun; 1993 Feb; 190(3):1037-44. PubMed ID: 8439305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional reconstitution of a purified proline permease from Candida albicans: interaction with the antifungal cispentacin.
    Jethwaney D; H Fer M; Khaware RK; Prasad R
    Microbiology (Reading); 1997 Feb; 143 ( Pt 2)():397-404. PubMed ID: 9043117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Preliminary experiments on the mode of action of oxalysine on Candida albicans and C. parapsilosis].
    Zhang H; Gu X; Wang Q; Becker JM
    Wei Sheng Wu Xue Bao; 1993 Dec; 33(6):411-7. PubMed ID: 8203133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mode of action of the antifungal beta-amino acid BAY 10-8888.
    Ziegelbauer K; Babczinski P; Schönfeld W
    Antimicrob Agents Chemother; 1998 Sep; 42(9):2197-205. PubMed ID: 9736535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the amino acid permeases in nitrogen-limited continuous cultures of the yeast Saccharomyces cerevisiae.
    Olivera H; González A; Peña A
    Yeast; 1993 Oct; 9(10):1065-73. PubMed ID: 8256513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of derepression of amino acids transport in Candida.
    Verma RS; Prasad R
    Biochem Int; 1983 Dec; 7(6):707-17. PubMed ID: 6385985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide uptake in Candida albicans.
    Davies MB
    J Gen Microbiol; 1980 Nov; 121(1):181-6. PubMed ID: 7019386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of T-2307, a novel arylamidine, in Candida albicans.
    Nishikawa H; Yamada E; Shibata T; Uchihashi S; Fan H; Hayakawa H; Nomura N; Mitsuyama J
    J Antimicrob Chemother; 2010 Aug; 65(8):1681-7. PubMed ID: 20513704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aspartate 55 in the Na+/proline permease of Escherichia coli is essential for Na+-coupled proline uptake.
    Quick M; Jung H
    Biochemistry; 1997 Apr; 36(15):4631-6. PubMed ID: 9109673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proline uptake in Candida albicans.
    Dabrowa N; Howard DH
    J Gen Microbiol; 1981 Dec; 127(2):391-7. PubMed ID: 7045279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purified arginine permease of Candida albicans is functionally active in a reconstituted system.
    Mukherjee PK; Prasad R
    Yeast; 1998 Mar; 14(4):335-45. PubMed ID: 9559542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABA uptake in a Saccharomyces cerevisiae strain.
    Bermúdez Moretti M; Correa García S; Ramos EH; Batlle A
    Cell Mol Biol (Noisy-le-grand); 1995 Sep; 41(6):843-9. PubMed ID: 8535178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of levorin on incorporation of individual amino acids into proteins of membranes, ribosomes and cell sap of Candida albicans].
    Obukhovskaia AS; Lishnevskaia EB; Tereshin IM
    Biokhimiia; 1980 Jun; 45(6):1000-3. PubMed ID: 7011426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved aspartate residue, Asp187, is important for Na+-dependent proline binding and transport by the Na+/proline transporter of Escherichia coli.
    Quick M; Jung H
    Biochemistry; 1998 Sep; 37(39):13800-6. PubMed ID: 9753469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased accumulation or increased isoleucyl-tRNA synthetase activity confers resistance to the cyclic beta-amino acid BAY 10-8888 in Candida albicans and Candida tropicalis.
    Ziegelbauer K
    Antimicrob Agents Chemother; 1998 Jul; 42(7):1581-6. PubMed ID: 9660987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid activation of a dual-specificity tRNA synthetase is independent of tRNA.
    Lipman RS; Beuning PJ; Musier-Forsyth K; Hou YM
    J Mol Biol; 2002 Feb; 316(3):421-7. PubMed ID: 11866507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of ionic composition of incubation medium on inhibition by levorin of amino acid transfer in Candida albicans].
    Obukhovskaia AS; Lishnevskaia EB; Tereshin IM
    Biokhimiia; 1980 Jul; 45(7):1201-7. PubMed ID: 7011428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the cellular composition of Candida albicans resistant to miconazole.
    Sharma S; Khuller GK
    Indian J Biochem Biophys; 1996 Oct; 33(5):420-4. PubMed ID: 9029825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and synthesis of novel imidazole-substituted dipeptide amides as potent and selective inhibitors of Candida albicans myristoylCoA:protein N-myristoyltransferase and identification of related tripeptide inhibitors with mechanism-based antifungal activity.
    Devadas B; Freeman SK; Zupec ME; Lu HF; Nagarajan SR; Kishore NS; Lodge JK; Kuneman DW; McWherter CA; Vinjamoori DV; Getman DP; Gordon JI; Sikorski JA
    J Med Chem; 1997 Aug; 40(16):2609-25. PubMed ID: 9258368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure.
    Konishi M; Nishio M; Saitoh K; Miyaki T; Oki T; Kawaguchi H
    J Antibiot (Tokyo); 1989 Dec; 42(12):1749-55. PubMed ID: 2516082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.