BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8439315)

  • 1. Adenosine diphosphate ribulose in human erythrocytes: a new metabolite with membrane binding properties.
    Franco L; Guida L; Zocchi E; Silvestro L; Benatti U; De Flora A
    Biochem Biophys Res Commun; 1993 Feb; 190(3):1143-8. PubMed ID: 8439315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free ADP-ribose in human erythrocytes: pathways of intra-erythrocytic conversion and non-enzymic binding to membrane proteins.
    Zocchi E; Guida L; Franco L; Silvestro L; Guerrini M; Benatti U; De Flora A
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):121-30. PubMed ID: 8216206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD glycohydrolase activities and ADP-ribose uptake in erythrocytes from normal subjects and cancer patients.
    Albeniz I; Demir O; Nurten R; Bermek E
    Biosci Rep; 2004 Feb; 24(1):41-53. PubMed ID: 15499831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospho ADP ribosylation of human glucose 6 phosphate dehydrogenase: probable mechanism of the occurrence of hyperanodic forms.
    Skala H; Vibert M; Kahn A; Dreyfus JC
    Biochem Biophys Res Commun; 1979 Aug; 89(3):988-96. PubMed ID: 39564
    [No Abstract]   [Full Text] [Related]  

  • 5. Presence and turnover of adenosine diphosphate ribose in human erythrocytes.
    Guida L; Zocchi E; Franco L; Benatti U; De Flora A
    Biochem Biophys Res Commun; 1992 Oct; 188(1):402-8. PubMed ID: 1417862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes.
    Lee HC; Zocchi E; Guida L; Franco L; Benatti U; De Flora A
    Biochem Biophys Res Commun; 1993 Mar; 191(2):639-45. PubMed ID: 8461019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholera toxin-catalysed ADP-ribosylation of erythrocyte proteins: general properties.
    Gill DM
    J Supramol Struct; 1979; 10(2):151-63. PubMed ID: 222965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of NAD glycohydrolase in ADP-ribose uptake from NAD by human erythrocytes.
    Kim UH; Han MK; Park BH; Kim HR; An NH
    Biochim Biophys Acta; 1993 Aug; 1178(2):121-6. PubMed ID: 8394137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The purification of a cysteine-dependent NAD+ glycohydrolase activity from bovine erythrocytes and evidence that it exhibits a novel ADP-ribosyltransferase activity.
    Saxty BA; van Heyningen S
    Biochem J; 1995 Sep; 310 ( Pt 3)(Pt 3):931-7. PubMed ID: 7575429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The incorporation of 32 P into spectrin aggregates following incubation of erythrocytes in 32 P-labelled inorganic phosphate.
    Dunbar JC; Ralston GB
    Biochim Biophys Acta; 1978 Jul; 510(2):283-91. PubMed ID: 667046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane phosphorylation in intact human erythrocytes.
    Reimann B; Klatt D; Tsamaloukas AG; Maretzki D
    Acta Biol Med Ger; 1981; 40(4-5):487-93. PubMed ID: 7315094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stimulatory and inhibitory guanine nucleotide-binding proteins of adenylate cyclase in erythrocytes from patients with pseudohypoparathyroidism type I.
    Akita Y; Saito T; Yajima Y; Sakuma S
    J Clin Endocrinol Metab; 1985 Dec; 61(6):1012-7. PubMed ID: 3932445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase.
    Gill DM; Meren R
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3050-4. PubMed ID: 210449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte membrane phosphorylation in sickle cell disease.
    Delaunay J; Galand C; Boivin P
    Nouv Rev Fr Hematol (1978); 1982; 24(4):227-30. PubMed ID: 6292828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-dependent lipid lateral phase separation as a mechanism of human erythrocyte ghost resealing.
    Minetti M; Ceccarini M
    J Cell Biochem; 1982; 19(1):59-75. PubMed ID: 6181083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of incorporated trypsin on anion exchange and membrane proteins in human red blood cell ghosts.
    Lepke S; Passow H
    Biochim Biophys Acta; 1976 Dec; 455(2):353-70. PubMed ID: 999920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calmodulin-dependent spectrin kinase activity in human erythrocytes.
    Huestis WH; Nelson MJ; Ferrell JE
    Prog Clin Biol Res; 1981; 56():137-55. PubMed ID: 6120520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hereditary spherocytosis of man. Altered binding of cytoskeletal components to the erythrocyte membrane.
    Hill JS; Sawyer WH; Howlett GJ; Wiley JS
    Biochem J; 1982 Feb; 201(2):259-66. PubMed ID: 7082289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, expression and characterization of YSA1H, a human adenosine 5'-diphosphosugar pyrophosphatase possessing a MutT motif.
    Gasmi L; Cartwright JL; McLennan AG
    Biochem J; 1999 Dec; 344 Pt 2(Pt 2):331-7. PubMed ID: 10567213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of two spectrin-binding proteins: biochemical and electron microscopic evidence for site-specific reassociation between spectrin and bands 2.1 and 4.1.
    Tyler JM; Hargreaves WR; Branton D
    Proc Natl Acad Sci U S A; 1979 Oct; 76(10):5192-6. PubMed ID: 291934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.