BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8439326)

  • 1. Evidence for a polarized efflux system for peptides in the apical membrane of Caco-2 cells.
    Burton PS; Conradi RA; Hilgers AR; Ho NF
    Biochem Biophys Res Commun; 1993 Feb; 190(3):760-6. PubMed ID: 8439326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of verapamil on the transport of peptides across the blood-brain barrier in rats: kinetic evidence for an apically polarized efflux mechanism.
    Chikhale EG; Burton PS; Borchardt RT
    J Pharmacol Exp Ther; 1995 Apr; 273(1):298-303. PubMed ID: 7714780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of serotonin at the apical and basolateral membranes of human intestinal epithelial (Caco-2) cells occurs through the neuronal serotonin transporter (SERT).
    Martel F; Monteiro R; Lemos C
    J Pharmacol Exp Ther; 2003 Jul; 306(1):355-62. PubMed ID: 12682218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2.
    Yu L; Zeng S
    J Pharm Pharmacol; 2007 May; 59(5):655-60. PubMed ID: 17524230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unidirectional transport from apical to basolateral compartment of cobalt ion in polarized Madin-Darby canine kidney cells.
    Nagao M; Sugaru E; Kambe T; Sasaki R
    Biochem Biophys Res Commun; 1999 Apr; 257(2):289-94. PubMed ID: 10198205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells.
    Nerurkar MM; Ho NF; Burton PS; Vidmar TJ; Borchardt RT
    J Pharm Sci; 1997 Jul; 86(7):813-21. PubMed ID: 9232522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Absorption of coptisine chloride and berberrubine across human intestinal epithelial by using human Caco-2 cell monolayers].
    Ma L; Yang XW
    Zhongguo Zhong Yao Za Zhi; 2007 Dec; 32(23):2523-7. PubMed ID: 18330249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secretory mechanisms of grepafloxacin and levofloxacin in the human intestinal cell line caco-2.
    Yamaguchi H; Yano I; Hashimoto Y; Inui KI
    J Pharmacol Exp Ther; 2000 Oct; 295(1):360-6. PubMed ID: 10992002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased polyphenol transport across cultured intestinal cells by a salivary proline-rich protein.
    Cai K; Hagerman AE; Minto RE; Bennick A
    Biochem Pharmacol; 2006 May; 71(11):1570-80. PubMed ID: 16580640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter.
    Wu X; Whitfield LR; Stewart BH
    Pharm Res; 2000 Feb; 17(2):209-15. PubMed ID: 10751037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct transport characteristics of basolateral peptide transporters between MDCK and Caco-2 cells.
    Sawada K; Terada T; Saito H; Inui K
    Pflugers Arch; 2001 Oct; 443(1):31-7. PubMed ID: 11692263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Identification of signals and mechanisms of sorting of plasma membrane proteins in intestinal epithelial cells].
    Breuza L; Monlauzeur L; Arsanto JP; Le Bivic A
    J Soc Biol; 1999; 193(2):131-4. PubMed ID: 10451345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of surfactants to enhance the permeability of peptides through Caco-2 cells by inhibition of an apically polarized efflux system.
    Nerurkar MM; Burton PS; Borchardt RT
    Pharm Res; 1996 Apr; 13(4):528-34. PubMed ID: 8710741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeability modulation of human intestinal Caco-2 cell monolayers by interferons.
    Kawaguchi H; Akazawa Y; Watanabe Y; Takakura Y
    Eur J Pharm Biopharm; 2005 Jan; 59(1):45-50. PubMed ID: 15567300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biophysical model of passive and polarized active transport processes in Caco-2 cells: approaches to uncoupling apical and basolateral membrane events in the intact cell.
    Ho NF; Burton PS; Conradi RA; Barsuhn CL
    J Pharm Sci; 1995 Jan; 84(1):21-7. PubMed ID: 7714738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of genistein-7-glucoside by human intestinal CACO-2 cells: potential role for MRP2.
    Walle UK; French KL; Walgren RA; Walle T
    Res Commun Mol Pathol Pharmacol; 1999 Jan; 103(1):45-56. PubMed ID: 10440570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct mechanisms of zinc uptake at the apical and basolateral membranes of caco-2 cells.
    Raffaniello RD; Lee SY; Teichberg S; Wapnir RA
    J Cell Physiol; 1992 Aug; 152(2):356-61. PubMed ID: 1639868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taxol transport by human intestinal epithelial Caco-2 cells.
    Walle UK; Walle T
    Drug Metab Dispos; 1998 Apr; 26(4):343-6. PubMed ID: 9531522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport characteristics of 9-nitrocamptothecin in the human intestinal cell line Caco-2 and everted gut sacs.
    Sha X; Fang X
    Int J Pharm; 2004 Mar; 272(1-2):161-71. PubMed ID: 15019079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Net glutathione secretion across primary cultured rabbit conjunctival epithelial cell layers.
    Gukasyan HJ; Lee VH; Kim KJ; Kannan R
    Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):1154-61. PubMed ID: 11923260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.