BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

800 related articles for article (PubMed ID: 8439407)

  • 1. Oxidant injury to the alveolar epithelium: biochemical and pharmacologic studies.
    Freeman BA; Panus PC; Matalon S; Buckley BJ; Baker RR
    Res Rep Health Eff Inst; 1993 Jan; (54):1-30; discussion 31-9. PubMed ID: 8439407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant enzyme activity in alveolar type II cells after exposure of rats to hyperoxia.
    Freeman BA; Mason RJ; Williams MC; Crapo JD
    Exp Lung Res; 1986; 10(2):203-22. PubMed ID: 3007082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of oxygen metabolites on rat alveolar type II cell viability and surfactant metabolism.
    Crim C; Simon RH
    Lab Invest; 1988 Apr; 58(4):428-37. PubMed ID: 2833658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen metabolite-induced toxicity to cultured bovine endothelial cells: status of cellular iron in mediating injury.
    Hiraishi H; Terano A; Razandi M; Pedram A; Sugimoto T; Harada T; Ivey KJ
    J Cell Physiol; 1994 Jul; 160(1):132-4. PubMed ID: 8021293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High glucose mediates pro-oxidant and antioxidant enzyme activities in coronary endothelial cells.
    Weidig P; McMaster D; Bayraktutan U
    Diabetes Obes Metab; 2004 Nov; 6(6):432-41. PubMed ID: 15479219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiol regulation of pro-inflammatory cytokines reveals a novel immunopharmacological potential of glutathione in the alveolar epithelium.
    Haddad JJ; Safieh-Garabedian B; Saadé NE; Land SC
    J Pharmacol Exp Ther; 2001 Mar; 296(3):996-1005. PubMed ID: 11181934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of hyperoxic exposure on antioxidant enzyme activities of alveolar type II cells in neonatal and adult rats.
    Keeney SE; Cress SE; Brown SE; Bidani A
    Pediatr Res; 1992 May; 31(5):441-4. PubMed ID: 1603620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hyperoxia on antioxidants in neonatal rat type II cells in vitro and in vivo.
    Kennedy KA; Crouch LS; Warshaw JB
    Pediatr Res; 1989 Nov; 26(5):400-3. PubMed ID: 2812889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of oxygen-derived free radicals on type II pneumocytes in primary culture.
    Masliah J; Housset B; Clément A; Hurbain I; Polonovski J
    Biomed Pharmacother; 1987; 41(9-10):453-6. PubMed ID: 3452422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different role of lipid peroxidation in oxidative stress-induced lethal injury in normal and tumor thymocytes.
    Palozza P; Agostara G; Piccioni E; Bartoli GM
    Arch Biochem Biophys; 1994 Jul; 312(1):88-94. PubMed ID: 8031151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xanthine oxidase-dependent ROS production mediates vitamin A pro-oxidant effects in cultured Sertoli cells.
    Zanotto-Filho A; Schröder R; Moreira JC
    Free Radic Res; 2008 Jun; 42(6):593-601. PubMed ID: 18569017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liposome-mediated augmentation of catalase in alveolar type II cells protects against H2O2 injury.
    Buckley BJ; Tanswell AK; Freeman BA
    J Appl Physiol (1985); 1987 Jul; 63(1):359-67. PubMed ID: 3040661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemioxyexcitation (delta pO2/ROS)-dependent release of IL-1 beta, IL-6 and TNF-alpha: evidence of cytokines as oxygen-sensitive mediators in the alveolar epithelium.
    Haddad JJ; Safieh-Garabedian B; Saadé NE; Kanaan SA; Land SC
    Cytokine; 2001 Feb; 13(3):138-47. PubMed ID: 11161456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport properties of isolated type II alveolar epithelial cells.
    Castranova V; Jones GS; Wright JR; Colby HD; Bowman L; Miles PR
    Am Rev Respir Dis; 1983 May; 127(5 Pt 2):S28-33. PubMed ID: 6303168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hyperoxia on the ultrastructural pathology of alveolar epithelium in relation to glutathione peroxidase, lactate dehydrogenase activities, and free radical production in rats, Rattus norvigicus.
    Bin-Jaliah I; Dallak M; Haffor AS
    Ultrastruct Pathol; 2009; 33(3):112-22. PubMed ID: 19479651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Regulation of alveolar type II cell proliferation and surfactant gene expression].
    Sugahara K
    Nihon Kyobu Shikkan Gakkai Zasshi; 1994 Dec; 32 Suppl():73-8. PubMed ID: 7602847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ozone injury to alveolar epithelium in vitro does not reflect loss of antioxidant defenses.
    Cheek JM; Buckpitt AR; Li C; Tarkington BK; Plopper CG
    Toxicol Appl Pharmacol; 1994 Mar; 125(1):59-69. PubMed ID: 8128496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration of TBA-reactive substances in type II pneumocytes exposed to oxidative stress.
    Piotrowski WJ; Marczak J; Kurmanowska Z; Górski P
    Arch Immunol Ther Exp (Warsz); 2004; 52(6):435-40. PubMed ID: 15577745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of asbestos and active oxygen species in activation and expression of ornithine decarboxylase in hamster tracheal epithelial cells.
    Marsh JP; Mossman BT
    Cancer Res; 1991 Jan; 51(1):167-73. PubMed ID: 1846307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved anti-oxidant activity of superoxide dismutase by direct chemical modification.
    Ishimoto N; Nemoto T; Nagayoshi K; Yamashita F; Hashida M
    J Control Release; 2006 Mar; 111(1-2):204-11. PubMed ID: 16466666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.