These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8439587)

  • 1. Cell cycle progression in human cells following re-oxygenation after extreme hypoxia: consequences concerning initiation of DNA synthesis.
    Amellem O; Pettersen EO
    Cell Prolif; 1993 Jan; 26(1):25-35. PubMed ID: 8439587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of cell proliferation under extreme and moderate hypoxia: the role of pyrimidine (deoxy)nucleotides.
    Amellem O; Löffler M; Pettersen EO
    Br J Cancer; 1994 Nov; 70(5):857-66. PubMed ID: 7947090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of cell-cycle progression by acute treatment with various degrees of hypoxia: modifications induced by low concentrations of misonidazole present during hypoxia.
    Pettersen EO; Lindmo T
    Br J Cancer; 1983 Dec; 48(6):809-17. PubMed ID: 6652020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation-modifying effect of oxygen in synchronized cells pre-treated with acute or prolonged hypoxia.
    Pettersen EO; Wang H
    Int J Radiat Biol; 1996 Sep; 70(3):319-26. PubMed ID: 8800203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of protein accumulation on the kinetics of entry into S phase following extreme hypoxia.
    Amellem O; Pettersen EO
    Anticancer Res; 1991; 11(3):1083-7. PubMed ID: 1888142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The retinoblastoma gene product is reversibly dephosphorylated and bound in the nucleus in S and G2 phases during hypoxic stress.
    Amellem O; Stokke T; Sandvik JA; Pettersen EO
    Exp Cell Res; 1996 Aug; 227(1):106-15. PubMed ID: 8806457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival of synchronized human NHIK 3025 cells irradiated aerobically following a prolonged treatment with extremely hypoxic conditions.
    Koritzinsky M; Furre T; Amellem O; Pettersen EO
    Int J Radiat Biol; 1998 Oct; 74(4):491-500. PubMed ID: 9798960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell cycle progression and radiation survival following prolonged hypoxia and re-oxygenation.
    Koritzinsky M; Wouters BG; Amellem O; Pettersen EO
    Int J Radiat Biol; 2001 Mar; 77(3):319-28. PubMed ID: 11258846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell inactivation and cell cycle inhibition as induced by extreme hypoxia: the possible role of cell cycle arrest as a protection against hypoxia-induced lethal damage.
    Amellem O; Pettersen EO
    Cell Prolif; 1991 Mar; 24(2):127-41. PubMed ID: 2009318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia-associated proteins in human cells cultivated in vitro: lack of association with hypoxia-induced cell cycle regulation.
    Shi Y; Amellem O; Pettersen EO
    APMIS; 1993 Jan; 101(1):75-82. PubMed ID: 8457329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low concentrations of misonidazole counteract effects of extreme hypoxia on cells in S.
    Pettersen EO; Lindmo T
    Br J Cancer; 1981 Mar; 43(3):355-66. PubMed ID: 7013776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lethality, DNA alkylation, and cell cycle effects of adozelesin (U-73975) on rodent and human cells.
    Bhuyan BK; Smith KS; Adams EG; Petzold GL; McGovren JP
    Cancer Res; 1992 Oct; 52(20):5687-92. PubMed ID: 1394193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia-induced apoptosis in human cells with normal p53 status and function, without any alteration in the nuclear protein level.
    Amellem O; Stokke T; Sandvik JA; Smedshammer L; Pettersen EO
    Exp Cell Res; 1997 May; 232(2):361-70. PubMed ID: 9168813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restimulation of cell cycle progression by hypoxic tumour cells with deoxynucleosides requires ppm oxygen tension.
    Löffler M
    Exp Cell Res; 1987 Mar; 169(1):255-61. PubMed ID: 3102268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maitotoxin, a calcium channel activator, inhibits cell cycle progression through the G1/S and G2/M transitions and prevents CDC2 kinase activation in GH4C1 cells.
    Van Dolah FM; Ramsdell JS
    J Cell Physiol; 1996 Jan; 166(1):49-56. PubMed ID: 8557775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of protein metabolism of human cells during and after acute hypoxia.
    Pettersen EO; Juul NO; Rønning OW
    Cancer Res; 1986 Sep; 46(9):4346-51. PubMed ID: 3731092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell cycle effects of CC-1065.
    Bhuyan BK; Crampton SL; Adams EG
    Cancer Res; 1983 Sep; 43(9):4227-32. PubMed ID: 6871861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiosensitivity of thymidylate synthase-deficient human tumor cells is affected by progression through the G1 restriction point into S-phase: implications for fluoropyrimidine radiosensitization.
    Hwang HS; Davis TW; Houghton JA; Kinsella TJ
    Cancer Res; 2000 Jan; 60(1):92-100. PubMed ID: 10646859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing cell-cycle kinetics after hypoxia/reoxygenation in HeLa cells expressing fluorescent ubiquitination-based cell cycle indicator (Fucci).
    Goto T; Kaida A; Miura M
    Exp Cell Res; 2015 Dec; 339(2):389-96. PubMed ID: 26500111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of staurosporine on MOLT-4 cell progression through G2 and on cytokinesis.
    Traganos F; Gong J; Ardelt B; Darzynkiewicz Z
    J Cell Physiol; 1994 Mar; 158(3):535-44. PubMed ID: 8126077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.