These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8439682)

  • 1. An electric model with time varying resistance for a pneumatic membrane blood pump.
    Jin Z; Qin J
    ASAIO J; 1993; 39(1):56-61. PubMed ID: 8439682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter-optimized model of cardiovascular-rotary blood pump interactions.
    Lim E; Dokos S; Cloherty SL; Salamonsen RF; Mason DG; Reizes JA; Lovell NH
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):254-66. PubMed ID: 19770086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques.
    Yu YC; Simaan MA; Mushi SE; Zorn NV
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Research on the control arithmetic for blood pump based on ventricular work].
    Xu X; Tan J; Gong Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1089-92. PubMed ID: 18027703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of systolic duration on mechanical heart valve cavitation in a pneumatic ventricular assist device: using a monoleaflet valve.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2008; 54(1):25-30. PubMed ID: 18204312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of cardiac valves in artificial heart performance.
    Olsen DB; Fukumasu H; Nakagaki M; Nielsen SD; Kessler TR; Lawson JL; Kolff J
    Med Instrum; 1979; 13(4):218-22. PubMed ID: 381858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):348-54. PubMed ID: 19521236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Design and control of a simulating cardiovascular system].
    Liu Y; Yang M; Li S; Zheng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Feb; 27(1):165-9. PubMed ID: 20337046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computer model of the pediatric circulatory system for testing pediatric assist devices.
    Giridharan GA; Koenig SC; Mitchell M; Gartner M; Pantalos GM
    ASAIO J; 2007; 53(1):74-81. PubMed ID: 17237652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Bio-artificial organs: cardiac applications].
    Flameng W
    Verh K Acad Geneeskd Belg; 2004; 66(4):246-52. PubMed ID: 15553097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction.
    Korakianitis T; Shi Y
    Med Eng Phys; 2006 Sep; 28(7):613-28. PubMed ID: 16293439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study.
    Giridharan GA; Skliar M
    Artif Organs; 2006 Apr; 30(4):301-7. PubMed ID: 16643388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hardware-in-the-loop-simulation of the cardiovascular system, with assist device testing application.
    Hanson BM; Levesley MC; Watterson K; Walker PG
    Med Eng Phys; 2007 Apr; 29(3):367-74. PubMed ID: 16815728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical optimization studies of cardiovascular-rotary blood pump interaction.
    Lim E; Dokos S; Salamonsen RF; Rosenfeldt FL; Ayre PJ; Lovell NH
    Artif Organs; 2012 May; 36(5):E110-24. PubMed ID: 22489799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow behavior within the 12-cc Penn State pulsatile pediatric ventricular assist device: an experimental study of the initial design.
    Manning KB; Wivholm BD; Yang N; Fontaine AA; Deutsch S
    Artif Organs; 2008 Jun; 32(6):442-52. PubMed ID: 18422800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data.
    Morley D; Litwak K; Ferber P; Spence P; Dowling R; Meyns B; Griffith B; Burkhoff D
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):21-8. PubMed ID: 17198776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemolysis estimation in a centrifugal blood pump using a tensor-based measure.
    Arora D; Behr M; Pasquali M
    Artif Organs; 2006 Jul; 30(7):539-47. PubMed ID: 16836735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electro-fluid-dynamic simulator for the cardiovascular system.
    Felipini CL; de Andrade AJ; Lucchi JC; da Fonseca JW; Nicolosi D
    Artif Organs; 2008 Apr; 32(4):349-54. PubMed ID: 18370952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro testing of a new driver for the pneumatic total artificial heart with inherent cardiac output measuring system.
    Frumento CI; Auch WD; Frumento AS
    Med Prog Technol; 1983-1984; 10(2):97-107. PubMed ID: 6674739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current status of the gyro centrifugal blood pump--development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project).
    Nosé Y; Furukawa K
    Artif Organs; 2004 Oct; 28(10):953-8. PubMed ID: 15385004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.