BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 843984)

  • 1. A Markov chain characterization of human neutrophil locomotion under neutral and chemotactic conditions.
    Boyarsky A; Noble PB
    Can J Physiol Pharmacol; 1977 Feb; 55(1):1-6. PubMed ID: 843984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of endothelial cell locomotion using a Markov chain model.
    Lee Y; Markenscoff PA; McIntire LV; Zygourakis K
    Biochem Cell Biol; 1995; 73(7-8):461-72. PubMed ID: 8703417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human lymphocyte migration in vitro: characterization and quantitation of locomotory parameters.
    Noble PB; Boyarsky A; Bentley KC
    Can J Physiol Pharmacol; 1979 Jan; 57(1):108-12. PubMed ID: 427640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ionic basis of chemotaxis. Separate cation requirements for neutrophil orientation and locomotion in a gradient of chemotactic peptide.
    Marasco WA; Becker EL; Oliver JM
    Am J Pathol; 1980 Mar; 98(3):749-68. PubMed ID: 6767408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fundamental motor of the human neutrophil is not random: evidence for local non-Markov movement in neutrophils.
    Hartman RS; Lau K; Chou W; Coates TD
    Biophys J; 1994 Dec; 67(6):2535-45. PubMed ID: 7696492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of chemotaxis and chemokinesis on leukocyte locomotion: a new interpretation of experimental results.
    Byrne HM; Cave G; McElwain DL
    IMA J Math Appl Med Biol; 1998 Sep; 15(3):235-56. PubMed ID: 9773518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The polymorphonuclear leukocyte (PMNL) locomotor defect in juvenile periodontitis. Study of random migration, chemokinesis and chemotaxis.
    Van Dyke TE; Horoszewicz HU; Genco RJ
    J Periodontol; 1982 Nov; 53(11):682-7. PubMed ID: 6960166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro effect of colchicine on neutrophil granulocyte locomotion. Assessment of the effect of colchicine on chemotaxis, chemokinesis and spontaneous motility, using a modified reversible Boyden chamber.
    Valerius NH
    Acta Pathol Microbiol Scand B; 1978 Jun; 86B(3):149-54. PubMed ID: 716916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T lymphocytes and neutrophil granulocytes differ in regulatory signaling and migratory dynamics with regard to spontaneous locomotion and chemotaxis.
    Entschladen F; Gunzer M; Scheuffele CM; Niggemann B; Zänker KS
    Cell Immunol; 2000 Feb; 199(2):104-14. PubMed ID: 10698620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of cyclic AMP in the chemotactic responsiveness and spontaneous motility of rabbit peritoneal neutrophils. The inhibition of neutrophil movement and the elevation of cyclic AMP levels by catecholamines, prostaglandins, theophylline and cholera toxin.
    Rivkin I; Rosenblatt J; Becker EL
    J Immunol; 1975 Oct; 115(4):1126-34. PubMed ID: 170335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulated neutrophil locomotion: chemokinesis and chemotaxis.
    Becker EL
    Arch Pathol Lab Med; 1977 Oct; 101(10):509-13. PubMed ID: 199132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity in motile responses of human neutrophil granulocytes: functional meaning and cytoskeletal basis.
    Keller H; Niggli V; Zimmermann A
    Adv Exp Med Biol; 1991; 297():23-37. PubMed ID: 1767754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inflammatory polymorphonuclear neutrophil leukocytes; orientation, chemotactic, locomotor and phagocytic capabilities of neutrophils from the human gingival crevice.
    Scully C; Wilkinson PC
    J Clin Lab Immunol; 1985 Jun; 17(2):69-73. PubMed ID: 3900409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical analysis of cell-target encounter rates in three dimensions. Effect of chemotaxis.
    Charnick SB; Lauffenburger DA
    Biophys J; 1990 May; 57(5):1009-23. PubMed ID: 2340340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Escherichia coli's chemotactic drift under exponential gradient.
    Samanta S; Layek R; Kar S; Raj MK; Mukhopadhyay S; Chakraborty S
    Phys Rev E; 2017 Sep; 96(3-1):032409. PubMed ID: 29346905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filifactor alocis Promotes Neutrophil Degranulation and Chemotactic Activity.
    Armstrong CL; Miralda I; Neff AC; Tian S; Vashishta A; Perez L; Le J; Lamont RJ; Uriarte SM
    Infect Immun; 2016 Dec; 84(12):3423-3433. PubMed ID: 27647870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Past states of continuous-time Markov models for ecological communities.
    Spencer M
    Math Biosci; 2008 Feb; 211(2):299-313. PubMed ID: 17931668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human neutrophil Fc gamma RIIIB and formyl peptide receptors are functionally linked during formyl-methionyl-leucyl-phenylalanine-induced chemotaxis.
    Kew RR; Grimaldi CM; Furie MB; Fleit HB
    J Immunol; 1992 Aug; 149(3):989-97. PubMed ID: 1321856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of staphylococcal products on locomotion and chemotaxis of human blood neutrophils and monocytes.
    Russell RJ; Wilkinson PC; McInroy RJ; McKay S; McCartney AC; Arbuthnott JP
    J Med Microbiol; 1976 Nov; 9(4):433-9. PubMed ID: 12369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A continuous-time model of centrally coordinated motion with random switching.
    Dallon JC; Despain LC; Evans EJ; Grant CP; Smith WV
    J Math Biol; 2017 Feb; 74(3):727-753. PubMed ID: 27395042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.