These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 8439874)
21. [Experimental studies of the effectiveness and compatibility of formaldehyde gas as well as peracetic acid and hydrogen peroxide aerosols]. Dietz P; Böhm R; Strauch D Zentralbl Veterinarmed B; 1980; 27(4):268-79. PubMed ID: 6775479 [No Abstract] [Full Text] [Related]
22. Inactivation kinetics of Geobacillus stearothermophilus spores by a peracetic acid or hydrogen peroxide fog in comparison to the liquid form. Hayrapetyan H; Nederhoff L; Vollebregt M; Mastwijk H; Nierop Groot M Int J Food Microbiol; 2020 Mar; 316():108418. PubMed ID: 31877424 [TBL] [Abstract][Full Text] [Related]
23. Inactivation of Bacillus anthracis spores by liquid biocides in the presence of food residue. Hilgren J; Swanson KM; Diez-Gonzalez F; Cords B Appl Environ Microbiol; 2007 Oct; 73(20):6370-7. PubMed ID: 17720823 [TBL] [Abstract][Full Text] [Related]
24. The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid. Baldry MG J Appl Bacteriol; 1983 Jun; 54(3):417-23. PubMed ID: 6409877 [TBL] [Abstract][Full Text] [Related]
25. The effect of Perasafe and sodium dichloroisocyanurate (NaDCC) against spores of Clostridium difficile and Bacillus atrophaeus on stainless steel and polyvinyl chloride surfaces. Block C J Hosp Infect; 2004 Jun; 57(2):144-8. PubMed ID: 15183245 [TBL] [Abstract][Full Text] [Related]
26. Decontamination of Bacillus spores adhered to iron and cement-mortar drinking water infrastructure in a model system using disinfectants. Szabo JG; Meiners G; Heckman L; Rice EW; Hall J J Environ Manage; 2017 Feb; 187():1-7. PubMed ID: 27865123 [TBL] [Abstract][Full Text] [Related]
27. An Increase in Healthcare-Associated Clostridium difficile Infection Associated with Use of a Defective Peracetic Acid-Based Surface Disinfectant. Cadnum JL; Jencson AL; O'Donnell MC; Flannery ER; Nerandzic MM; Donskey CJ Infect Control Hosp Epidemiol; 2017 Mar; 38(3):300-305. PubMed ID: 27866475 [TBL] [Abstract][Full Text] [Related]
28. Comparison of hydrogen peroxide and peracetic acid as isolator sterilization agents in a hospital pharmacy. Bounoure F; Fiquet H; Arnaud P Am J Health Syst Pharm; 2006 Mar; 63(5):451-5. PubMed ID: 16484519 [TBL] [Abstract][Full Text] [Related]
29. Exploring the potential synergistic effects of chemical disinfectants and UV on the inactivation of free-living bacteria and treatment of biofilms in a pilot-scale system. Vankerckhoven E; Verbessem B; Crauwels S; Declerck P; Muylaert K; Willems KA; Rediers H Water Sci Technol; 2011; 64(6):1247-53. PubMed ID: 22214077 [TBL] [Abstract][Full Text] [Related]
30. Effect of incubation temperature and pH on the recovery of Bacillus weihenstephanensis spores after exposure to a peracetic acid-based disinfectant or to pulsed light. Trunet C; Mtimet N; Mathot AG; Postollec F; Leguérinel I; Couvert O; Carlin F; Coroller L Int J Food Microbiol; 2018 Aug; 278():81-87. PubMed ID: 29709833 [TBL] [Abstract][Full Text] [Related]
31. [A study of the efficacy of disinfectants against anthrax spores]. Lensing HH; Oei HL Tijdschr Diergeneeskd; 1984 Jul; 109(13):557-63. PubMed ID: 6431631 [TBL] [Abstract][Full Text] [Related]
32. Inactivation of Bacillus atrophaeus spores with surface-active peracids and characterization of formed free radicals using electron spin resonance spectroscopy. Mohan A; Dunn J; Hunt MC; Sizer CE J Food Sci; 2009 Sep; 74(7):M411-7. PubMed ID: 19895489 [TBL] [Abstract][Full Text] [Related]
33. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO Chhetri RK; Baun A; Andersen HR Int J Hyg Environ Health; 2017 May; 220(3):570-574. PubMed ID: 27964897 [TBL] [Abstract][Full Text] [Related]
34. Efficacy of liquid spray decontaminants for inactivation of Bacillus anthracis spores on building and outdoor materials. Wood JP; Choi YW; Rogers JV; Kelly TJ; Riggs KB; Willenberg ZJ J Appl Microbiol; 2011 May; 110(5):1262-73. PubMed ID: 21332900 [TBL] [Abstract][Full Text] [Related]
35. Kinetic model of water disinfection using peracetic acid including synergistic effects. Flores MJ; Brandi RJ; Cassano AE; Labas MD Water Sci Technol; 2016; 73(2):275-82. PubMed ID: 26819382 [TBL] [Abstract][Full Text] [Related]
36. Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Koivunen J; Heinonen-Tanski H Water Res; 2005 Apr; 39(8):1519-26. PubMed ID: 15878023 [TBL] [Abstract][Full Text] [Related]
37. Inactivation of human norovirus using chemical sanitizers. Kingsley DH; Vincent EM; Meade GK; Watson CL; Fan X Int J Food Microbiol; 2014 Feb; 171():94-9. PubMed ID: 24334094 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of peracetic acid fog for the inactivation of Bacillus anthracis spore surrogates in a large decontamination chamber. Wood JP; Calfee MW; Clayton M; Griffin-Gatchalian N; Touati A; Egler K J Hazard Mater; 2013 Apr; 250-251():61-7. PubMed ID: 23434480 [TBL] [Abstract][Full Text] [Related]
39. Inactivation kinetics of spores of Bacillus cereus strains treated by a peracetic acid-based disinfectant at different concentrations and temperatures. Sudhaus N; Pina-Pérez MC; Martínez A; Klein G Foodborne Pathog Dis; 2012 May; 9(5):442-52. PubMed ID: 22506696 [TBL] [Abstract][Full Text] [Related]
40. A kinetic study of the effect of hydrogen peroxide and peracetic acid against Staphylococcus aureus and Pseudomonas aeruginosa using the bioscreen disinfection method. Lambert RJ; Johnston MD; Simons EA J Appl Microbiol; 1999 Nov; 87(5):782-6. PubMed ID: 10594721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]