BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8440730)

  • 1. Recombinant Chinese hamster ovary cell matrix metalloprotease-3 (MMP-3, stromelysin-1). Role of calcium in promatrix metalloprotease-3 (pro-MMP-3, prostromelysin-1) activation and thermostability of the low mass catalytic domain of MMP-3.
    Housley TJ; Baumann AP; Braun ID; Davis G; Seperack PK; Wilhelm SM
    J Biol Chem; 1993 Feb; 268(6):4481-7. PubMed ID: 8440730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix metalloproteinase-3 (stromelysin-1). Identification as the cartilage acid metalloprotease and effect of pH on catalytic properties and calcium affinity.
    Wilhelm SM; Shao ZH; Housley TJ; Seperack PK; Baumann AP; Gunja-Smith Z; Woessner JF
    J Biol Chem; 1993 Oct; 268(29):21906-13. PubMed ID: 8408046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the 46-kDa intermediates of matrix metalloproteinase 3 (stromelysin 1) obtained by site-directed mutation of phenylalanine 83.
    Benbow U; Butticè G; Nagase H; Kurkinen M
    J Biol Chem; 1996 May; 271(18):10715-22. PubMed ID: 8631880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple sites of the propeptide region of human stromelysin-1 are required for maintaining a latent form of the enzyme.
    Freimark BD; Feeser WS; Rosenfeld SA
    J Biol Chem; 1994 Oct; 269(43):26982-7. PubMed ID: 7929438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of activation of human neutrophil gelatinase B. Discriminating between the role of Ca2+ in activation and catalysis.
    Bu CH; Pourmotabbed T
    J Biol Chem; 1995 Aug; 270(31):18563-9. PubMed ID: 7629187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human fibroblast stromelysin catalytic domain: expression, purification, and characterization of a C-terminally truncated form.
    Marcy AI; Eiberger LL; Harrison R; Chan HK; Hutchinson NI; Hagmann WK; Cameron PM; Boulton DA; Hermes JD
    Biochemistry; 1991 Jul; 30(26):6476-83. PubMed ID: 1647201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties.
    Okada Y; Morodomi T; Enghild JJ; Suzuki K; Yasui A; Nakanishi I; Salvesen G; Nagase H
    Eur J Biochem; 1990 Dec; 194(3):721-30. PubMed ID: 2269296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the 92-kDa gelatinase by stromelysin and 4-aminophenylmercuric acetate. Differential processing and stabilization of the carboxyl-terminal domain by tissue inhibitor of metalloproteinases (TIMP).
    Shapiro SD; Fliszar CJ; Broekelmann TJ; Mecham RP; Senior RM; Welgus HG
    J Biol Chem; 1995 Mar; 270(11):6351-6. PubMed ID: 7890773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the precursor of human stromelysin 2 and its interactions with other matrix metalloproteinases.
    Nakamura H; Fujii Y; Ohuchi E; Yamamoto E; Okada Y
    Eur J Biochem; 1998 Apr; 253(1):67-75. PubMed ID: 9578462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production, purification and characterization of canine prostromelysin.
    Bayne EK; Hutchinson NI; Walakovits LA; Donatelli S; MacNaul KL; Harper CF; Cameron P; Moore VL; Lark MW
    Matrix; 1992 Jun; 12(3):173-84. PubMed ID: 1406451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3.
    Will H; Atkinson SJ; Butler GS; Smith B; Murphy G
    J Biol Chem; 1996 Jul; 271(29):17119-23. PubMed ID: 8663332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the C-terminal domain in collagenase and stromelysin specificity.
    Murphy G; Allan JA; Willenbrock F; Cockett MI; O'Connell JP; Docherty AJ
    J Biol Chem; 1992 May; 267(14):9612-8. PubMed ID: 1315762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of recombinant human prostromelysin. Studies on heat activation to give high-Mr and low-Mr active forms, and a comparison of recombinant with natural stromelysin activities.
    Koklitis PA; Murphy G; Sutton C; Angal S
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):217-21. PubMed ID: 2039471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of structural determinants and molecular mechanisms involved in pro-stromelysin-3 activation by 4-aminophenylmercuric acetate and furin-type convertases.
    Santavicca M; Noel A; Angliker H; Stoll I; Segain JP; Anglard P; Chretien M; Seidah N; Basset P
    Biochem J; 1996 May; 315 ( Pt 3)(Pt 3):953-8. PubMed ID: 8645182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation mechanisms of the precursors of matrix metalloproteinases 1, 2 and 3.
    Nagase H; Suzuki K; Morodomi T; Enghild JJ; Salvesen G
    Matrix Suppl; 1992; 1():237-44. PubMed ID: 1480033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The acute phase reactant serum amyloid A (SAA3) is a novel substrate for degradation by the metalloproteinases collagenase and stromelysin.
    Mitchell TI; Jeffrey JJ; Palmiter RD; Brinckerhoff CE
    Biochim Biophys Acta; 1993 Mar; 1156(3):245-54. PubMed ID: 8461313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties.
    Imai K; Yokohama Y; Nakanishi I; Ohuchi E; Fujii Y; Nakai N; Okada Y
    J Biol Chem; 1995 Mar; 270(12):6691-7. PubMed ID: 7896811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of the catalytic domain of human matrix metalloproteinase 19. Evidence for a role as a potent basement membrane degrading enzyme.
    Stracke JO; Hutton M; Stewart M; Pendás AM; Smith B; López-Otin C; Murphy G; Knäuper V
    J Biol Chem; 2000 May; 275(20):14809-16. PubMed ID: 10809722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate.
    Nagase H; Enghild JJ; Suzuki K; Salvesen G
    Biochemistry; 1990 Jun; 29(24):5783-9. PubMed ID: 2383557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. APMA (4-aminophenylmercuric acetate) activation of stromelysin-1 involves protein interactions in addition to those with cysteine-75 in the propeptide.
    Galazka G; Windsor LJ; Birkedal-Hansen H; Engler JA
    Biochemistry; 1996 Aug; 35(34):11221-7. PubMed ID: 8780527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.