These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 8440986)

  • 61. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.
    Trainor LJ; Marie C; Bruce IC; Bidelman GM
    Hear Res; 2014 Feb; 308():60-70. PubMed ID: 23916754
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Encoding of amplitude modulation in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 May; 71(5):1797-825. PubMed ID: 8064349
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Postnatal development of neuronal responses to frequency-modulated tones in chinchilla auditory cortex.
    Brown TA; Harrison RV
    Brain Res; 2010 Jan; 1309():29-39. PubMed ID: 19874805
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reorganization of the frequency map of the auditory cortex evoked by cortical electrical stimulation in the big brown bat.
    Chowdhury SA; Suga N
    J Neurophysiol; 2000 Apr; 83(4):1856-63. PubMed ID: 10758097
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Representations of Time-Varying Cochlear Implant Stimulation in Auditory Cortex of Awake Marmosets (
    Johnson LA; Della Santina CC; Wang X
    J Neurosci; 2017 Jul; 37(29):7008-7022. PubMed ID: 28634306
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Neural encoding of single-formant stimuli in the cat. I. Responses of auditory nerve fibers.
    Wang X; Sachs MB
    J Neurophysiol; 1993 Sep; 70(3):1054-75. PubMed ID: 8229159
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Temporal integration affects intensity change detection in human auditory cortex.
    Soeta Y; Nakagawa S
    Neuroreport; 2010 Dec; 21(18):1157-61. PubMed ID: 20938362
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Contrast gain control in auditory cortex.
    Rabinowitz NC; Willmore BD; Schnupp JW; King AJ
    Neuron; 2011 Jun; 70(6):1178-91. PubMed ID: 21689603
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Response characteristics of primary auditory cortex neurons underlying perceptual asymmetry of ramped and damped sounds.
    Wang J; Qin L; Chimoto S; Tazunoki S; Sato Y
    Neuroscience; 2014 Jan; 256():309-21. PubMed ID: 24177068
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of physical parameters of sound on the sensory gating effects of N40 in rats.
    Zhou D; Ma Y; Liu N; Chen L; He M; Miao Y
    Neurosci Lett; 2008 Feb; 432(2):100-4. PubMed ID: 18242845
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Neurons in the cerebellum of echolocating bats respond to acoustic signals.
    Jen PH; Schlegel PA
    Brain Res; 1980 Sep; 196(2):502-7. PubMed ID: 7397541
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Processing of low-probability sounds by cortical neurons.
    Ulanovsky N; Las L; Nelken I
    Nat Neurosci; 2003 Apr; 6(4):391-8. PubMed ID: 12652303
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The owl's cochlear nuclei process different sound localization cues.
    Konishi M; Sullivan WE; Takahashi T
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 2):360-4. PubMed ID: 4031243
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Temporal resolution of the human primary auditory cortex in gap detection.
    Rupp A; Gutschalk A; Hack S; Scherg M
    Neuroreport; 2002 Dec; 13(17):2203-7. PubMed ID: 12488797
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Layer-specific representation of long-lasting sustained activity in the rat auditory cortex.
    Shiramatsu TI; Ibayashi K; Takahashi H
    Neuroscience; 2019 Jun; 408():91-104. PubMed ID: 30978381
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat.
    de Villers-Sidani E; Chang EF; Bao S; Merzenich MM
    J Neurosci; 2007 Jan; 27(1):180-9. PubMed ID: 17202485
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.
    Higgins NC; McLaughlin SA; Rinne T; Stecker GC
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7602-E7611. PubMed ID: 28827357
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stability of spectro-temporal tuning over several seconds in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Neuroscience; 2007 Sep; 148(3):806-14. PubMed ID: 17693032
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dynamics of auditory cortical activity during behavioural engagement and auditory perception.
    Carcea I; Insanally MN; Froemke RC
    Nat Commun; 2017 Feb; 8():14412. PubMed ID: 28176787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.