These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 8442418)

  • 21. Changes of hair cell stereocilia and threshold shift after acoustic trauma in guinea pigs: comparison between inner and outer hair cells.
    Chen YS; Liu TC; Cheng CH; Yeh TH; Lee SY; Hsu CJ
    ORL J Otorhinolaryngol Relat Spec; 2003; 65(5):266-74. PubMed ID: 14730182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Qualitative and quantitative changes in the guinea pig organ of Corti after pure tone acoustic overstimulation.
    Fredelius L; Johansson B; Bagger-Sjöbäck D; Wersäll J
    Hear Res; 1987; 30(2-3):157-67. PubMed ID: 3680063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects on cochlear microphonics in guinea pigs induced by prolonged exposure to low-frequency sound.
    Maehara N; Sadamoto T; Yamamura K
    Eur J Appl Physiol Occup Physiol; 1984; 52(3):305-9. PubMed ID: 6539683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The protective effect of the sympathetic nervous system against acoustic trauma.
    Wada T; Takahashi K; Ito Z; Hara A; Takahashi H; Kasakari J
    Auris Nasus Larynx; 1999 Oct; 26(4):375-82. PubMed ID: 10530733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen-rich saline alleviates experimental noise-induced hearing loss in guinea pigs.
    Zhou Y; Zheng H; Ruan F; Chen X; Zheng G; Kang M; Zhang Q; Sun X
    Neuroscience; 2012 May; 209():47-53. PubMed ID: 22387110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):189-202. PubMed ID: 2737965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure.
    Scheibe F; Haupt H; Ludwig C
    Hear Res; 1992 Nov; 63(1-2):19-25. PubMed ID: 1464569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How low must you go? Effects of low-level noise on cochlear neural response.
    Liu X; Li L; Chen GD; Salvi R
    Hear Res; 2020 Jul; 392():107980. PubMed ID: 32447098
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The combined effect of cisplatin and furosemide on hearing function in guinea pigs.
    Laurell G; Engström B
    Hear Res; 1989 Mar; 38(1-2):19-26. PubMed ID: 2708156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-linear aspects of outer hair cell transduction and the temporary threshold shifts after acoustic trauma.
    Patuzzi R
    Audiol Neurootol; 2002; 7(1):17-20. PubMed ID: 11914520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss.
    Kopke RD; Coleman JK; Liu J; Campbell KC; Riffenburgh RH
    Laryngoscope; 2002 Sep; 112(9):1515-32. PubMed ID: 12352659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig.
    Avan P; Bonfils P; Loth D; Elbez M; Erminy M
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3012-20. PubMed ID: 7759641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. II. Dependence on the level of temporary threshold shifts.
    Rajan R
    J Neurophysiol; 1988 Aug; 60(2):569-79. PubMed ID: 3171642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vascular endothelial growth factor (VEGF) expression in noise-induced hearing loss.
    Picciotti PM; Fetoni AR; Paludetti G; Wolf FI; Torsello A; Troiani D; Ferraresi A; Pola R; Sergi B
    Hear Res; 2006 Apr; 214(1-2):76-83. PubMed ID: 16603326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined effects of noise and neomycin. Cochlear changes in the guinea pig.
    Brown JJ; Brummett RE; Meikle MB; Vernon J
    Acta Otolaryngol; 1978; 86(5-6):394-400. PubMed ID: 716862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noise and the young mouse: genotype modifies the sensitive period for effects on cochlear physiology and audiogenic seizures.
    Henry KR
    Behav Neurosci; 1984 Dec; 98(6):1073-82. PubMed ID: 6508912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thapsigargin suppresses cochlear potentials and DPOAEs and is toxic to hair cells.
    Bobbin RP; Parker M; Wall L
    Hear Res; 2003 Oct; 184(1-2):51-60. PubMed ID: 14553903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The protective effect of conditioning on noise-induced hearing loss is frequency-dependent.
    Pourbakht A; Imani A
    Acta Med Iran; 2012; 50(10):664-9. PubMed ID: 23275293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Observation on the protective effect of MK-801 against hearing loss in acoustic trauma].
    Diao M; Zhang Y; Liu H; Han H; Gao W
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2005 Jan; 19(1):27-30. PubMed ID: 15830701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recovery of the endocochlear potential and the K+ concentrations in the cochlear fluids after acoustic trauma.
    Melichar I; Syka J; Ulehlová L
    Hear Res; 1980 Jan; 2(1):55-63. PubMed ID: 7351391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.