These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 8442613)

  • 1. Lactate breakpoint during slowly increasing work rates and irregular breathing.
    Kinker JR
    Am Rev Respir Dis; 1993 Mar; 147(3):761-3. PubMed ID: 8442613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects.
    Wasserman K; Stringer WW; Casaburi R; Koike A; Cooper CB
    Z Kardiol; 1994; 83 Suppl 3():1-12. PubMed ID: 7941654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ventilatory and plasma lactate response with different exercise protocols: a comparison of methods.
    McLellan TM
    Int J Sports Med; 1985 Feb; 6(1):30-5. PubMed ID: 3988412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of controlled frequency breathing during exercise on blood gases and acid-base balance.
    Sharp RL; Williams DJ; Bevan L
    Int J Sports Med; 1991 Feb; 12(1):62-5. PubMed ID: 1903130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of the heart rate-minute ventilation relationship with clinical data: relevance to rate-adaptive pacing.
    Soucie LP; Carey C; Woodend AK; Tang AS
    Pacing Clin Electrophysiol; 1997 Aug; 20(8 Pt 1):1913-8. PubMed ID: 9272528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer analysis of oxygen consumption and minute ventilation for the detection of the lactate threshold.
    Hossack KF; Eldridge JE; Ades PA; Giansiracusa RF; Jones RH
    Cardiology; 1988; 75(2):123-32. PubMed ID: 3130988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of lactate threshold by respiratory gas exchange measures and blood lactate levels during incremental load work.
    von Duvillard SP; LeMura LM; Bacharach DW; Di Vico P
    J Manipulative Physiol Ther; 1993 Jun; 16(5):312-8. PubMed ID: 8345314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normalization for peak oxygen uptake increases the prognostic power of the ventilatory response to exercise in patients with chronic heart failure.
    Guazzi M; De Vita S; Cardano P; Barlera S; Guazzi MD
    Am Heart J; 2003 Sep; 146(3):542-8. PubMed ID: 12947376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise oscillatory breathing and increased ventilation to carbon dioxide production slope in heart failure: an unfavorable combination with high prognostic value.
    Guazzi M; Arena R; Ascione A; Piepoli M; Guazzi MD;
    Am Heart J; 2007 May; 153(5):859-67. PubMed ID: 17452165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventilation and acid-base equilibrium for upper body and lower body exercise.
    Sawka MN; Miles DS; Petrofsky JS; Wilde SW; Glaser RM
    Aviat Space Environ Med; 1982 Apr; 53(4):354-9. PubMed ID: 7082250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Relation between the change of slope of heart rate and second lactic and ventilatory thresholds in muscular exercise with large load].
    Ahmaidi S; Varray A; Collomp K; Mercier J; Préfaut C
    C R Seances Soc Biol Fil; 1992; 186(1-2):145-55. PubMed ID: 1450988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed appearance of blood lactate with reduced frequency breathing during exercise.
    Yamamoto Y; Takei Y; Mutoh Y; Miyashita M
    Eur J Appl Physiol Occup Physiol; 1988; 57(4):462-6. PubMed ID: 3135187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventilation and blood lactate increase exponentially during incremental exercise.
    Dennis SC; Noakes TD; Bosch AN
    J Sports Sci; 1992 Oct; 10(5):437-49. PubMed ID: 1433461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breathing pattern in highly competitive cyclists during incremental exercise.
    Lucía A; Carvajal A; Calderón FJ; Alfonso A; Chicharro JL
    Eur J Appl Physiol Occup Physiol; 1999 May; 79(6):512-21. PubMed ID: 10344461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prognostic ability of VE/VCO2 slope calculations using different exercise test time intervals in subjects with heart failure.
    Arena R; Humphrey R; Peberdy MA
    Eur J Cardiovasc Prev Rehabil; 2003 Dec; 10(6):463-8. PubMed ID: 14671470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensation of breathlessness and respiratory oxygen cost during cycle exercise with and without conscious entrainment of the breathing rhythm.
    Takano N; Deguchi H
    Eur J Appl Physiol Occup Physiol; 1997; 76(3):209-13. PubMed ID: 9286599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between the ventilation and lactate thresholds following normal, low and high carbohydrate diets.
    McLellan TM; Gass GC
    Eur J Appl Physiol Occup Physiol; 1989; 58(6):568-76. PubMed ID: 2731528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Menstrual cycle: no effect on exercise cardiorespiratory variables or blood lactate concentration.
    Smekal G; von Duvillard SP; Frigo P; Tegelhofer T; Pokan R; Hofmann P; Tschan H; Baron R; Wonisch M; Renezeder K; Bachl N
    Med Sci Sports Exerc; 2007 Jul; 39(7):1098-106. PubMed ID: 17596777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pedal rate on cardiorespiratory responses during continuous exercise.
    Hagan RD; Weis SE; Raven PB
    Med Sci Sports Exerc; 1992 Oct; 24(10):1088-95. PubMed ID: 1435156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceived exertion associated with breathing hyperoxic mixtures during submaximal work.
    Allen PD; Pandolf KB
    Med Sci Sports; 1977; 9(2):122-7. PubMed ID: 895429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.