These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8443133)

  • 1. Internal motion in carbohydrates as probed by n.m.r. spectroscopy.
    Braccini I; Michon V; Hervé du Penhoat C; Imberty A; Pérez S
    Int J Biol Macromol; 1993 Feb; 15(1):52-5. PubMed ID: 8443133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR analysis of carbohydrates with model-free spectral densities: the dispersion range revisited.
    Catoire L; Braccini I; Bouchemal-Chibani N; Jullien L; Herve du Penhoat C; Perez S
    Glycoconj J; 1997 Dec; 14(8):935-43. PubMed ID: 9486426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of internal motions in oligosaccharides by 1H relaxation measurements at different magnetic fields.
    Hricovíni M; Shah RN; Carver JP
    Biochemistry; 1992 Oct; 31(41):10018-23. PubMed ID: 1390759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-proton coupling constants in the conformational analysis of sugar molecules.
    Tvaroska I; Taravel FR
    Adv Carbohydr Chem Biochem; 1995; 51():15-61. PubMed ID: 7484362
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of the extent of internal motions in oligosaccharides.
    Rutherford TJ; Partridge J; Weller CT; Homans SW
    Biochemistry; 1993 Nov; 32(47):12715-24. PubMed ID: 8251491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of 2D NMR spectroscopy to carbohydrates.
    Lerner L
    Basic Life Sci; 1990; 56():17-25. PubMed ID: 2078170
    [No Abstract]   [Full Text] [Related]  

  • 7. Determination of complex carbohydrate structure using carbonyl carbon resonances of peracetylated derivatives.
    Goux WJ
    Basic Life Sci; 1990; 56():47-62. PubMed ID: 2078180
    [No Abstract]   [Full Text] [Related]  

  • 8. Solution conformation and dynamics of a tetrasaccharide related to the Lewis(x) antigen deduced by NMR relaxation measurements.
    Poveda A; Asensio JL; Martín-Pastor M; Jiménez-Barbero J
    J Biomol NMR; 1997 Jul; 10(1):29-43. PubMed ID: 9335114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conformation of C-glycosyl compounds.
    Jiménez-Barbero J; Espinosa JF; Asensio JL; Cañada FJ; Poveda A
    Adv Carbohydr Chem Biochem; 2000; 56():235-84. PubMed ID: 11039113
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparison of the conformation and dynamics of a polysaccharide and of its isolated heptasaccharide repeating unit on the basis of nuclear Overhauser effect, long-range C-C and C-H coupling constants, and NMR relaxation data.
    Martin-Pastor M; Bush CA
    Biopolymers; 2000 Oct; 54(4):235-48. PubMed ID: 10867632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and conformation of complex carbohydrates of glycoproteins, glycolipids, and bacterial polysaccharides.
    Bush CA; Martin-Pastor M; Imberty A
    Annu Rev Biophys Biomol Struct; 1999; 28():269-93. PubMed ID: 10410803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional proton magnetic resonance spectroscopy.
    Dabrowski J
    Methods Enzymol; 1989; 179():122-56. PubMed ID: 2622346
    [No Abstract]   [Full Text] [Related]  

  • 13. Oligosaccharides and recognition--a 'shape' problem probed by n.m.r. and molecular modelling.
    Homans SW; Rutherford T
    Biochem Soc Trans; 1993 May; 21(2):449-52. PubMed ID: 8359507
    [No Abstract]   [Full Text] [Related]  

  • 14. Conformations of type 1 and type 2 oligosaccharides from ovarian cyst glycoprotein by nuclear Overhauser effect spectroscopy and T1 simulations.
    Cagas P; Bush CA
    Biopolymers; 1992 Mar; 32(3):277-92. PubMed ID: 1581547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of heparin-derived tetrasaccharide complexed to the plasma protein antithrombin derived from NOEs, J-couplings and chemical shifts.
    Hricovíni M; Guerrini M; Bisio A
    Eur J Biochem; 1999 May; 261(3):789-801. PubMed ID: 10215897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of picomole amounts of oligosaccharides from glycoproteins by 1H NMR spectroscopy.
    Fellenberg M; Coksezen A; Meyer B
    Angew Chem Int Ed Engl; 2010 Mar; 49(14):2630-3. PubMed ID: 20198670
    [No Abstract]   [Full Text] [Related]  

  • 17. When sugars get wet. A comprehensive study of the behavior of water on the surface of oligosaccharides.
    Ramadugu SK; Chung YH; Xia J; Margulis CJ
    J Phys Chem B; 2009 Aug; 113(31):11003-15. PubMed ID: 19588947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidation of the structure and conformation of a methylated tetrasaccharide-alditol acetate by n.m.r. spectroscopy.
    De Marco A; Gariboldi P; Molinari H; Verotta L
    Carbohydr Res; 1992 Mar; 226(1):15-27. PubMed ID: 1499018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexibility in a tetrasaccharide fragment from the high mannose type of N-linked oligosaccharides.
    Imberty A; Pérez S; Hricovíni M; Shah RN; Carver JP
    Int J Biol Macromol; 1993 Feb; 15(1):17-23. PubMed ID: 8443127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulations of nuclear Overhauser effect spectra of complex oligosaccharides.
    Bush CA
    Methods Enzymol; 1994; 240():446-59. PubMed ID: 7823843
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.