These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8443153)

  • 21. Phosphorylation of iodopsin, chicken red-sensitive cone visual pigment.
    Fukada Y; Kokame K; Okano T; Shichida Y; Yoshizawa T; McDowell JH; Hargrave PA; Palczewski K
    Biochemistry; 1990 Oct; 29(43):10102-6. PubMed ID: 2271641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments.
    Nathans J; Thomas D; Hogness DS
    Science; 1986 Apr; 232(4747):193-202. PubMed ID: 2937147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The "five-sites" rule and the evolution of red and green color vision in mammals.
    Yokoyama S; Radlwimmer FB
    Mol Biol Evol; 1998 May; 15(5):560-7. PubMed ID: 9580985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral tuning of rhodopsin and visual cone pigments.
    Zhou X; Sundholm D; Wesołowski TA; Kaila VR
    J Am Chem Soc; 2014 Feb; 136(7):2723-6. PubMed ID: 24422511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments.
    Davies WI; Wilkie SE; Cowing JA; Hankins MW; Hunt DM
    Cell Mol Life Sci; 2012 Jul; 69(14):2455-64. PubMed ID: 22349213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates.
    Yokoyama S; Yang H; Starmer WT
    Genetics; 2008 Aug; 179(4):2037-43. PubMed ID: 18660543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment.
    Takahashi Y; Ebrey TG
    Biochemistry; 2003 May; 42(20):6025-34. PubMed ID: 12755604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular determinants of human red/green color discrimination.
    Asenjo AB; Rim J; Oprian DD
    Neuron; 1994 May; 12(5):1131-8. PubMed ID: 8185948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation.
    Chang BS; Crandall KA; Carulli JP; Hartl DL
    Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is chicken green-sensitive cone visual pigment a rhodopsin-like pigment? A comparative study of the molecular properties between chicken green and rhodopsin.
    Shichida Y; Imai H; Imamoto Y; Fukada Y; Yoshizawa T
    Biochemistry; 1994 Aug; 33(31):9040-4. PubMed ID: 8049204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. What makes red visual pigments red? A resonance Raman microprobe study of retinal chromophore structure in iodopsin.
    Lin SW; Imamoto Y; Fukada Y; Shichida Y; Yoshizawa T; Mathies RA
    Biochemistry; 1994 Mar; 33(8):2151-60. PubMed ID: 8117671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The molecular basis of dichromatic color vision in males with multiple red and green visual pigment genes.
    Jagla WM; Jägle H; Hayashi T; Sharpe LT; Deeb SS
    Hum Mol Genet; 2002 Jan; 11(1):23-32. PubMed ID: 11772996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment.
    Fujimoto KJ; Minowa F; Nishina M; Nakamura S; Ohashi S; Katayama K; Kandori H; Yanai T
    J Phys Chem Lett; 2023 Feb; 14(7):1784-1793. PubMed ID: 36762971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of rhodopsin: a template for cone visual pigments and other G protein-coupled receptors.
    Stenkamp RE; Filipek S; Driessen CA; Teller DC; Palczewski K
    Biochim Biophys Acta; 2002 Oct; 1565(2):168-82. PubMed ID: 12409193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absorption spectra of the hybrid pigments responsible for anomalous color vision.
    Merbs SL; Nathans J
    Science; 1992 Oct; 258(5081):464-6. PubMed ID: 1411542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation.
    Chinen A; Matsumoto Y; Kawamura S
    Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generation of knock-in mice carrying third cones with spectral sensitivity different from S and L cones.
    Onishi A; Hasegawa J; Imai H; Chisaka O; Ueda Y; Honda Y; Tachibana M; Shichida Y
    Zoolog Sci; 2005 Oct; 22(10):1145-56. PubMed ID: 16286727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of spectral tuning in the dolphin visual pigments.
    Fasick JI; Robsinson PR
    Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment.
    Weitz CJ; Went LN; Nathans J
    Am J Hum Genet; 1992 Aug; 51(2):444-6. PubMed ID: 1386496
    [No Abstract]   [Full Text] [Related]  

  • 40. A back-propagation neural network predicts absorption maxima of chimeric human red/green visual pigments.
    Robinson PR; Griffith K; Gross JM; O'Neill MC
    Vision Res; 1999 May; 39(9):1707-12. PubMed ID: 10343862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.