These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8443162)

  • 1. CO recombination to human myoglobin mutants in glycerol-water solutions.
    Balasubramanian S; Lambright DG; Marden MC; Boxer SG
    Biochemistry; 1993 Mar; 32(9):2202-12. PubMed ID: 8443162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The position 68(E11) side chain in myoglobin regulates ligand capture, bond formation with heme iron, and internal movement into the xenon cavities.
    Dantsker D; Roche C; Samuni U; Blouin G; Olson JS; Friedman JM
    J Biol Chem; 2005 Nov; 280(46):38740-55. PubMed ID: 16155005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perturbations of the distal heme pocket in human myoglobin mutants probed by infrared spectroscopy of bound CO: correlation with ligand binding kinetics.
    Balasubramanian S; Lambright DG; Boxer SG
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4718-22. PubMed ID: 8506324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phe-46(CD4) orients the distal histidine for hydrogen bonding to bound ligands in sperm whale myoglobin.
    Lai HH; Li T; Lyons DS; Phillips GN; Olson JS; Gibson QH
    Proteins; 1995 Aug; 22(4):322-39. PubMed ID: 7479707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscosity-dependent dynamics of CO rebinding to microperoxidase-8 in glycerol/water solution.
    Park J; Lee T; Lim M
    J Phys Chem B; 2010 Aug; 114(33):10897-904. PubMed ID: 20684499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myoglobin mutants giving the largest geminate yield in CO rebinding in the nanosecond time domain.
    Sugimoto T; Unno M; Shiro Y; Dou Y; Ikeda-Saito M
    Biophys J; 1998 Nov; 75(5):2188-94. PubMed ID: 9788913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water and ligand entry in myoglobin: assessing the speed and extent of heme pocket hydration after CO photodissociation.
    Goldbeck RA; Bhaskaran S; Ortega C; Mendoza JL; Olson JS; Soman J; Kliger DS; Esquerra RM
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1254-9. PubMed ID: 16432219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of residue 45(CD3) and heme-6-propionate to the biomolecular and geminate recombination reactions of myoglobin.
    Carver TE; Olson JS; Smerdon SJ; Krzywda S; Wilkinson AJ; Gibson QH; Blackmore RS; Ropp JD; Sligar SG
    Biochemistry; 1991 May; 30(19):4697-705. PubMed ID: 2029516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing heme protein conformational equilibration rates with kinetic selection.
    Tian WD; Sage JT; Champion PM; Chien E; Sligar SG
    Biochemistry; 1996 Mar; 35(11):3487-502. PubMed ID: 8639499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand dynamics in an electron transfer protein. Picosecond geminate recombination of carbon monoxide to heme in mutant forms of cytochrome c.
    Silkstone G; Jasaitis A; Wilson MT; Vos MH
    J Biol Chem; 2007 Jan; 282(3):1638-49. PubMed ID: 17114183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO rebinding to protoheme: investigations of the proximal and distal contributions to the geminate rebinding barrier.
    Ye X; Yu A; Georgiev GY; Gruia F; Ionascu D; Cao W; Sage JT; Champion PM
    J Am Chem Soc; 2005 Apr; 127(16):5854-61. PubMed ID: 15839683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geminate rebinding in trehalose-glass embedded myoglobins reveals residue-specific control of intramolecular trajectories.
    Dantsker D; Samuni U; Friedman AJ; Yang M; Ray A; Friedman JM
    J Mol Biol; 2002 Jan; 315(2):239-51. PubMed ID: 11779242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geminate carbon monoxide rebinding to a c-type haem.
    Silkstone G; Jasaitis A; Vos MH; Wilson MT
    Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of ligand binding to myoglobin.
    Austin RH; Beeson KW; Eisenstein L; Frauenfelder H; Gunsalus IC
    Biochemistry; 1975 Dec; 14(24):5355-73. PubMed ID: 1191643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent composition and viscosity effects on the kinetics of CO binding to horse myoglobin.
    Kleinert T; Doster W; Leyser H; Petry W; Schwarz V; Settles M
    Biochemistry; 1998 Jan; 37(2):717-33. PubMed ID: 9425096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy and dynamics of a ligand-binding pathway in myoglobin: the roles of residues 45, 60, 64, and 68.
    Lambright DG; Balasubramanian S; Decatur SM; Boxer SG
    Biochemistry; 1994 May; 33(18):5518-25. PubMed ID: 8180174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand binding to heme proteins: connection between dynamics and function.
    Steinbach PJ; Ansari A; Berendzen J; Braunstein D; Chu K; Cowen BR; Ehrenstein D; Frauenfelder H; Johnson JB; Lamb DC
    Biochemistry; 1991 Apr; 30(16):3988-4001. PubMed ID: 2018767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilizing bound O2 in myoglobin by valine68 (E11) to asparagine substitution.
    Krzywda S; Murshudov GN; Brzozowski AM; Jaskolski M; Scott EE; Klizas SA; Gibson QH; Olson JS; Wilkinson AJ
    Biochemistry; 1998 Nov; 37(45):15896-907. PubMed ID: 9843395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational relaxation and ligand binding in myoglobin.
    Ansari A; Jones CM; Henry ER; Hofrichter J; Eaton WA
    Biochemistry; 1994 May; 33(17):5128-45. PubMed ID: 8172888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural dynamics of myoglobin: an infrared kinetic study of ligand migration in mutants YQR and YQRF.
    Lamb DC; Arcovito A; Nienhaus K; Minkow O; Draghi F; Brunori M; Nienhaus GU
    Biophys Chem; 2004 Apr; 109(1):41-58. PubMed ID: 15059658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.