These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 8443169)
1. Static and time-resolved absorption spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: evidence for an equilibrium between bR570 and an O-like species. Sonar S; Krebs MP; Khorana HG; Rothschild KJ Biochemistry; 1993 Mar; 32(9):2263-71. PubMed ID: 8443169 [TBL] [Abstract][Full Text] [Related]
2. Fourier transform Raman spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: formation of a stable O-like species during light adaptation and detection of its transient N-like photoproduct. Rath P; Krebs MP; He Y; Khorana HG; Rothschild KJ Biochemistry; 1993 Mar; 32(9):2272-81. PubMed ID: 8443170 [TBL] [Abstract][Full Text] [Related]
3. FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: detection of a stable O-like species and characterization of its photocycle at low temperature. He Y; Krebs MP; Fischer WB; Khorana HG; Rothschild KJ Biochemistry; 1993 Mar; 32(9):2282-90. PubMed ID: 8443171 [TBL] [Abstract][Full Text] [Related]
4. Ultraviolet-visible transient spectroscopy of bacteriorhodopsin mutants. Evidence for two forms of tyrosine-185----phenylalanine. Duñach M; Berkowitz S; Marti T; He YW; Subramaniam S; Khorana HG; Rothschild KJ J Biol Chem; 1990 Oct; 265(28):16978-84. PubMed ID: 2211603 [TBL] [Abstract][Full Text] [Related]
5. Time-resolved Fourier transform infrared spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: Asp-96 reprotonates during O formation; Asp-85 and Asp-212 deprotonate during O decay. Bousché O; Sonar S; Krebs MP; Khorana HG; Rothschild KJ Photochem Photobiol; 1992 Dec; 56(6):1085-95. PubMed ID: 1337213 [TBL] [Abstract][Full Text] [Related]
6. Interaction between Asp-85 and the proton-releasing group in bacteriorhodopsin. A study of an O-like photocycle intermediate. Gat Y; Friedman N; Sheves M; Ottolenghi M Biochemistry; 1997 Apr; 36(14):4135-48. PubMed ID: 9100007 [TBL] [Abstract][Full Text] [Related]
7. Uv-visible spectroscopy of bacteriorhodopsin mutants: substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation. Duñach M; Marti T; Khorana HG; Rothschild KJ Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9873-7. PubMed ID: 2263638 [TBL] [Abstract][Full Text] [Related]
8. Effect of genetic modification of tyrosine-185 on the proton pump and the blue-to-purple transition in bacteriorhodopsin. Jang DJ; el-Sayed MA; Stern LJ; Mogi T; Khorana HG Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4103-7. PubMed ID: 2349220 [TBL] [Abstract][Full Text] [Related]
9. pH dependence of the formation of an M-type intermediate in the photocycle of 13-cis-bacteriorhodopsin. Drachev LA; Dracheva SV; Kaulen AD FEBS Lett; 1993 Oct; 332(1-2):67-70. PubMed ID: 8405451 [TBL] [Abstract][Full Text] [Related]
10. Evidence for the rate of the final step in the bacteriorhodopsin photocycle being controlled by the proton release group: R134H mutant. Lu M; Balashov SP; Ebrey TG; Chen N; Chen Y; Menick DR; Crouch RK Biochemistry; 2000 Mar; 39(9):2325-31. PubMed ID: 10694399 [TBL] [Abstract][Full Text] [Related]
11. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin. Thorgeirsson TE; Milder SJ; Miercke LJ; Betlach MC; Shand RF; Stroud RM; Kliger DS Biochemistry; 1991 Sep; 30(38):9133-42. PubMed ID: 1892824 [TBL] [Abstract][Full Text] [Related]
12. Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle. Balashov SP; Govindjee R; Kono M; Imasheva E; Lukashev E; Ebrey TG; Crouch RK; Menick DR; Feng Y Biochemistry; 1993 Oct; 32(39):10331-43. PubMed ID: 8399176 [TBL] [Abstract][Full Text] [Related]
13. Resonance Raman and optical transient studies on the light-induced proton pump of bacteriorhodopsin reveal parallel photocycles. Eisfeld W; Pusch C; Diller R; Lohrmann R; Stockburger M Biochemistry; 1993 Jul; 32(28):7196-215. PubMed ID: 8343509 [TBL] [Abstract][Full Text] [Related]
14. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin. Imasheva ES; Balashov SP; Ebrey TG; Chen N; Crouch RK; Menick DR Biophys J; 1999 Nov; 77(5):2750-63. PubMed ID: 10545374 [TBL] [Abstract][Full Text] [Related]
15. Time-resolved fluorometry of purple membrane of Halobacterium halobium. O640 and an O-like red-shifted intermediate Q. Ohtani H; Itoh H; Shinmura T FEBS Lett; 1992 Jun; 305(1):6-8. PubMed ID: 1633860 [TBL] [Abstract][Full Text] [Related]
16. Bacteriorhodopsin photoreaction: identification of a long-lived intermediate N (P,R350) at high pH and its M-like photoproduct. Kouyama T; Nasuda-Kouyama A; Ikegami A; Mathew MK; Stoeckenius W Biochemistry; 1988 Aug; 27(16):5855-63. PubMed ID: 3191097 [TBL] [Abstract][Full Text] [Related]
18. Two processes lead to a stable all-trans and 13-cis isomer equilibrium in dark-adapted bacteriorhodopsin; effect of high pressure on bacteriorhodopsin, bacteriorhodopsin mutant D96N and fluoro-bacteriorhodopsin analogues. Bryl K; Yoshihara K Eur Biophys J; 2002 Dec; 31(7):539-48. PubMed ID: 12451423 [TBL] [Abstract][Full Text] [Related]
19. Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy. Ahl PL; Stern LJ; Düring D; Mogi T; Khorana HG; Rothschild KJ J Biol Chem; 1988 Sep; 263(27):13594-601. PubMed ID: 3047127 [TBL] [Abstract][Full Text] [Related]
20. Exploring the function of Tyr83 in bacteriorhodopsin: features of the Y83F and Y83N mutants. Imasheva ES; Lu M; Balashov SP; Ebrey TG; Chen Y; Ablonczy Z; Menick DR; Crouch RK Biochemistry; 2001 Nov; 40(44):13320-30. PubMed ID: 11683642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]