These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 8443170)
1. Fourier transform Raman spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: formation of a stable O-like species during light adaptation and detection of its transient N-like photoproduct. Rath P; Krebs MP; He Y; Khorana HG; Rothschild KJ Biochemistry; 1993 Mar; 32(9):2272-81. PubMed ID: 8443170 [TBL] [Abstract][Full Text] [Related]
2. FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: detection of a stable O-like species and characterization of its photocycle at low temperature. He Y; Krebs MP; Fischer WB; Khorana HG; Rothschild KJ Biochemistry; 1993 Mar; 32(9):2282-90. PubMed ID: 8443171 [TBL] [Abstract][Full Text] [Related]
3. Static and time-resolved absorption spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: evidence for an equilibrium between bR570 and an O-like species. Sonar S; Krebs MP; Khorana HG; Rothschild KJ Biochemistry; 1993 Mar; 32(9):2263-71. PubMed ID: 8443169 [TBL] [Abstract][Full Text] [Related]
4. Time-resolved Fourier transform infrared spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: Asp-96 reprotonates during O formation; Asp-85 and Asp-212 deprotonate during O decay. Bousché O; Sonar S; Krebs MP; Khorana HG; Rothschild KJ Photochem Photobiol; 1992 Dec; 56(6):1085-95. PubMed ID: 1337213 [TBL] [Abstract][Full Text] [Related]
5. Characterization of photo-intermediates in the photo-reaction pathways of a bacteriorhodopsin Y185F mutant using in situ photo-irradiation solid-state NMR spectroscopy. Oshima K; Shigeta A; Makino Y; Kawamura I; Okitsu T; Wada A; Tuzi S; Iwasa T; Naito A Photochem Photobiol Sci; 2015 Sep; 14(9):1694-702. PubMed ID: 26169449 [TBL] [Abstract][Full Text] [Related]
6. Tyrosine protonation changes in bacteriorhodopsin. A Fourier transform infrared study of BR548 and its primary photoproduct. Roepe PD; Ahl PL; Herzfeld J; Lugtenburg J; Rothschild KJ J Biol Chem; 1988 Apr; 263(11):5110-7. PubMed ID: 3356682 [TBL] [Abstract][Full Text] [Related]
7. Resonance Raman and optical transient studies on the light-induced proton pump of bacteriorhodopsin reveal parallel photocycles. Eisfeld W; Pusch C; Diller R; Lohrmann R; Stockburger M Biochemistry; 1993 Jul; 32(28):7196-215. PubMed ID: 8343509 [TBL] [Abstract][Full Text] [Related]
8. Uv-visible spectroscopy of bacteriorhodopsin mutants: substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation. Duñach M; Marti T; Khorana HG; Rothschild KJ Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9873-7. PubMed ID: 2263638 [TBL] [Abstract][Full Text] [Related]
9. Ultraviolet-visible transient spectroscopy of bacteriorhodopsin mutants. Evidence for two forms of tyrosine-185----phenylalanine. Duñach M; Berkowitz S; Marti T; He YW; Subramaniam S; Khorana HG; Rothschild KJ J Biol Chem; 1990 Oct; 265(28):16978-84. PubMed ID: 2211603 [TBL] [Abstract][Full Text] [Related]
10. High-pressure near-infrared Raman spectroscopy of bacteriorhodopsin light to dark adaptation. Schulte A; Bradley L Biophys J; 1995 Oct; 69(4):1554-62. PubMed ID: 8534826 [TBL] [Abstract][Full Text] [Related]
11. Trp86 --> Phe replacement in bacteriorhodopsin affects a water molecule near Asp85 and light adaptation. Hatanaka M; Kashima R; Kandori H; Friedman N; Sheves M; Needleman R; Lanyi JK; Maeda A Biochemistry; 1997 May; 36(18):5493-8. PubMed ID: 9154932 [TBL] [Abstract][Full Text] [Related]
12. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer. Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698 [TBL] [Abstract][Full Text] [Related]
13. Two processes lead to a stable all-trans and 13-cis isomer equilibrium in dark-adapted bacteriorhodopsin; effect of high pressure on bacteriorhodopsin, bacteriorhodopsin mutant D96N and fluoro-bacteriorhodopsin analogues. Bryl K; Yoshihara K Eur Biophys J; 2002 Dec; 31(7):539-48. PubMed ID: 12451423 [TBL] [Abstract][Full Text] [Related]
14. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101 [TBL] [Abstract][Full Text] [Related]
15. Protein conformational changes during the bacteriorhodopsin photocycle. A Fourier transform infrared/resonance Raman study of the alkaline form of the mutant Asp-85-->Asn. Nilsson A; Rath P; Olejnik J; Coleman M; Rothschild KJ J Biol Chem; 1995 Dec; 270(50):29746-51. PubMed ID: 8530365 [TBL] [Abstract][Full Text] [Related]
16. Perturbed interaction between residues 85 and 204 in Tyr-185-->Phe and Asp-85-->Glu bacteriorhodopsins. Richter HT; Needleman R; Lanyi JK Biophys J; 1996 Dec; 71(6):3392-8. PubMed ID: 8968608 [TBL] [Abstract][Full Text] [Related]
17. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence for the interaction of aspartic acid 212 with tyrosine 185 and possible role in the proton pump mechanism. Rothschild KJ; Braiman MS; He YW; Marti T; Khorana HG J Biol Chem; 1990 Oct; 265(28):16985-91. PubMed ID: 2211604 [TBL] [Abstract][Full Text] [Related]
19. Interaction between Asp-85 and the proton-releasing group in bacteriorhodopsin. A study of an O-like photocycle intermediate. Gat Y; Friedman N; Sheves M; Ottolenghi M Biochemistry; 1997 Apr; 36(14):4135-48. PubMed ID: 9100007 [TBL] [Abstract][Full Text] [Related]
20. Effect of genetic modification of tyrosine-185 on the proton pump and the blue-to-purple transition in bacteriorhodopsin. Jang DJ; el-Sayed MA; Stern LJ; Mogi T; Khorana HG Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4103-7. PubMed ID: 2349220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]