These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 8443184)

  • 1. Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes.
    Gibson NJ; Brown MF
    Biochemistry; 1993 Mar; 32(9):2438-54. PubMed ID: 8443184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis.
    Gibson NJ; Brown MF
    Photochem Photobiol; 1991 Dec; 54(6):985-92. PubMed ID: 1775536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction.
    Wang Y; Botelho AV; Martinez GV; Brown MF
    J Am Chem Soc; 2002 Jul; 124(26):7690-701. PubMed ID: 12083922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of phosphatidylserine in the MI-MII equilibrium of rhodopsin.
    Gibson NJ; Brown MF
    Biochem Biophys Res Commun; 1991 Apr; 176(2):915-21. PubMed ID: 2025300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of rhodopsin function by properties of the membrane bilayer.
    Brown MF
    Chem Phys Lipids; 1994 Sep; 73(1-2):159-80. PubMed ID: 8001180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of pH on the MI-MII equilibrium of rhodopsin in recombinant membranes.
    Gibson NJ; Brown MF
    Biochem Biophys Res Commun; 1990 Jun; 169(3):1028-34. PubMed ID: 2363712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids.
    Botelho AV; Gibson NJ; Thurmond RL; Wang Y; Brown MF
    Biochemistry; 2002 May; 41(20):6354-68. PubMed ID: 12009897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium and dynamic bilayer structural properties of unsaturated acyl chain phosphatidylcholine-cholesterol-rhodopsin recombinant vesicles and rod outer segment disk membranes as determined from higher order analysis of fluorescence anisotropy decay.
    Straume M; Litman BJ
    Biochemistry; 1988 Oct; 27(20):7723-33. PubMed ID: 3207703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of sn-1-saturated,sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: effects of cholesterol and acyl chain unsaturation on the metarhodopsin I in equilibrium with metarhodopsin II equilibrium.
    Mitchell DC; Straume M; Litman BJ
    Biochemistry; 1992 Jan; 31(3):662-70. PubMed ID: 1731921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction.
    Litman BJ; Niu SL; Polozova A; Mitchell DC
    J Mol Neurosci; 2001; 16(2-3):237-42; discussion 279-84. PubMed ID: 11478379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ethanol on metarhodopsin II formation is potentiated by phospholipid polyunsaturation.
    Mitchell DC; Litman BJ
    Biochemistry; 1994 Nov; 33(43):12752-6. PubMed ID: 7947679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes.
    Parkes JH; Gibson SK; Liebman PA
    Biochemistry; 1999 May; 38(21):6862-78. PubMed ID: 10346908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-protein interactions mediate the photochemical function of rhodopsin.
    Wiedmann TS; Pates RD; Beach JM; Salmon A; Brown MF
    Biochemistry; 1988 Aug; 27(17):6469-74. PubMed ID: 3219348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation alters the pH-dependent active state equilibrium of rhodopsin by modulating the membrane surface potential.
    Gibson SK; Parkes JH; Liebman PA
    Biochemistry; 1999 Aug; 38(34):11103-14. PubMed ID: 10460166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier transform infrared study of the rod outer segment disk and plasma membranes of vertebrate retina.
    Lamba OP; Borchman D; O'Brien PJ
    Biochemistry; 1994 Feb; 33(7):1704-12. PubMed ID: 8110772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of membrane elastic energy to rhodopsin function.
    Soubias O; Teague WE; Hines KG; Mitchell DC; Gawrisch K
    Biophys J; 2010 Aug; 99(3):817-24. PubMed ID: 20682259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the lipid matrix for structure and function of the GPCR rhodopsin.
    Soubias O; Gawrisch K
    Biochim Biophys Acta; 2012 Feb; 1818(2):234-40. PubMed ID: 21924236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical functionality of rhodopsin-phospholipid recombinant membranes.
    O'Brien DF; Costa LF; Ott RA
    Biochemistry; 1977 Apr; 16(7):1295-303. PubMed ID: 557336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of the pH-dependent equilibrium between metarhodopsins I and II and the pH-independent interaction of metarhodopsin II with transducin C-terminal peptide.
    Sato K; Morizumi T; Yamashita T; Shichida Y
    Biochemistry; 2010 Feb; 49(4):736-41. PubMed ID: 20030396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy.
    Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ
    Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.