These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 8443225)
1. The cation receptor subsite of the choline transporter in preimplantation mouse conceptuses resembles a cation receptor subsite of several amino acid transporters. Van Winkle LJ; Campione AL; Mann DF; Wasserlauf HG Biochim Biophys Acta; 1993 Feb; 1146(1):38-44. PubMed ID: 8443225 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site. Van Winkle LJ; Campione AL; Gorman JM Biochim Biophys Acta; 1990 Jun; 1025(2):215-24. PubMed ID: 2114171 [TBL] [Abstract][Full Text] [Related]
3. Glycine transport in mouse eggs and preimplantation conceptuses. Van Winkle LJ; Haghighat N; Campione AL; Gorman JM Biochim Biophys Acta; 1988 Jun; 941(2):241-56. PubMed ID: 2454661 [TBL] [Abstract][Full Text] [Related]
4. Development of system B0,+ and a broad-scope Na(+)-dependent transporter of zwitterionic amino acids in preimplantation mouse conceptuses. Van Winkle LJ; Campione AL; Farrington BH Biochim Biophys Acta; 1990 Jun; 1025(2):225-33. PubMed ID: 2114172 [TBL] [Abstract][Full Text] [Related]
5. Ouabain-sensitive Rb+ uptake in mouse eggs and preimplantation conceptuses. Van Winkle LJ; Campione AL Dev Biol; 1991 Jul; 146(1):158-66. PubMed ID: 1647989 [TBL] [Abstract][Full Text] [Related]
6. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti). Young JD; Fincham DA; Harvey CM Biochim Biophys Acta; 1991 Nov; 1070(1):111-8. PubMed ID: 1751517 [TBL] [Abstract][Full Text] [Related]
7. Transport of cationic and zwitterionic amino acids in preimplantation rat conceptuses. Van Winkle LJ; Iannaccone PM; Campione AL; Garton RL Dev Biol; 1990 Nov; 142(1):184-93. PubMed ID: 2227094 [TBL] [Abstract][Full Text] [Related]
8. Osmotic regulation of taurine transport via system beta and novel processes in mouse preimplantation conceptuses. Van Winkle LJ; Patel M; Wasserlauf HG; Dickinson HR; Campione AL Biochim Biophys Acta; 1994 May; 1191(2):244-55. PubMed ID: 8172910 [TBL] [Abstract][Full Text] [Related]
9. Functional changes in cation-preferring amino acid transport during development of preimplantation mouse conceptuses. Van Winkle LJ; Campione AL Biochim Biophys Acta; 1990 Oct; 1028(2):165-73. PubMed ID: 2121273 [TBL] [Abstract][Full Text] [Related]
10. Changes in the activities of amino acid transport systems b0,+ and L during development of preimplantation mouse conceptuses. Van Winkle LJ; Campione AL; Gorman JM; Weimer BD Biochim Biophys Acta; 1990 Jan; 1021(1):77-84. PubMed ID: 2104753 [TBL] [Abstract][Full Text] [Related]
11. Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. Van Winkle LJ; Campione AL; Gorman JM J Biol Chem; 1988 Mar; 263(7):3150-63. PubMed ID: 3125176 [TBL] [Abstract][Full Text] [Related]
12. Transport of benzenoid amino acids by system T and four broad scope systems in preimplantation mouse conceptuses. Van Winkle LJ; Mann DF; Campione AL; Farrington BH Biochim Biophys Acta; 1990 Sep; 1027(3):268-77. PubMed ID: 2397236 [TBL] [Abstract][Full Text] [Related]
13. Choline transport via choline transporter-like protein 1 in conditionally immortalized rat syncytiotrophoblast cell lines TR-TBT. Lee NY; Choi HM; Kang YS Placenta; 2009 Apr; 30(4):368-74. PubMed ID: 19246089 [TBL] [Abstract][Full Text] [Related]
14. Mediated Na(+)-independent transport of L-glutamate and L-cystine in 1- and 2-cell mouse conceptuses. Van Winkle LJ; Mann DF; Wasserlauf HG; Patel M Biochim Biophys Acta; 1992 Jun; 1107(2):299-304. PubMed ID: 1354486 [TBL] [Abstract][Full Text] [Related]
15. Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4). Friedrich A; George RL; Bridges CC; Prasad PD; Ganapathy V Biochim Biophys Acta; 2001 Jun; 1512(2):299-307. PubMed ID: 11406107 [TBL] [Abstract][Full Text] [Related]
16. Competitive inhibition of sodium-dependent high affinity choline uptake by harmala alkaloids. Smart L Eur J Pharmacol; 1981 Nov; 75(4):265-9. PubMed ID: 7318912 [TBL] [Abstract][Full Text] [Related]
17. Molecular and Functional Analysis of Choline Transporters and Antitumor Effects of Choline Transporter-Like Protein 1 Inhibitors in Human Pancreatic Cancer Cells. Hirai K; Watanabe S; Nishijima N; Shibata K; Hase A; Yamanaka T; Inazu M Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707889 [TBL] [Abstract][Full Text] [Related]
18. Functional expression of choline transporter-like protein 1 (CTL1) in small cell lung carcinoma cells: a target molecule for lung cancer therapy. Inazu M; Yamada T; Kubota N; Yamanaka T Pharmacol Res; 2013 Oct; 76():119-31. PubMed ID: 23948665 [TBL] [Abstract][Full Text] [Related]
19. Molecular cloning of a human, hemicholinium-3-sensitive choline transporter. Apparsundaram S; Ferguson SM; George AL; Blakely RD Biochem Biophys Res Commun; 2000 Oct; 276(3):862-7. PubMed ID: 11027560 [TBL] [Abstract][Full Text] [Related]
20. Functional characterization of Na+-independent choline transport in primary cultures of neurons from mouse cerebral cortex. Fujita T; Shimada A; Okada N; Yamamoto A Neurosci Lett; 2006 Jan; 393(2-3):216-21. PubMed ID: 16239069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]