These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 8443248)
1. Lecithin-cholesterol acyltransferase: effects of mutagenesis at N-linked oligosaccharide attachment sites on acyl acceptor specificity. Francone OL; Evangelista L; Fielding CJ Biochim Biophys Acta; 1993 Feb; 1166(2-3):301-4. PubMed ID: 8443248 [TBL] [Abstract][Full Text] [Related]
2. Effects of site-directed mutagenesis on the N-glycosylation sites of human lecithin:cholesterol acyltransferase. Qu SJ; Fan HZ; Blanco-Vaca F; Pownall HJ Biochemistry; 1993 Aug; 32(34):8732-6. PubMed ID: 8364023 [TBL] [Abstract][Full Text] [Related]
3. Role of glutamic acid residues 154, 155, and 165 of lecithin:cholesterol acyltransferase in cholesterol esterification and phospholipase A2 activities. Wang J; DeLozier JA; Gebre AK; Dolphin PJ; Parks JS J Lipid Res; 1998 Jan; 39(1):51-8. PubMed ID: 9469585 [TBL] [Abstract][Full Text] [Related]
4. Role of N-linked glycosylation of lecithin:cholesterol acyltransferase in lipoprotein substrate specificity. O K; Hill JS; Pritchard PH Biochim Biophys Acta; 1995 Jan; 1254(2):193-7. PubMed ID: 7827124 [TBL] [Abstract][Full Text] [Related]
5. Lecithin:cholesterol acyltransferase: role of N-linked glycosylation in enzyme function. O K; Hill JS; Wang X; McLeod R; Pritchard PH Biochem J; 1993 Sep; 294 ( Pt 3)(Pt 3):879-84. PubMed ID: 8379944 [TBL] [Abstract][Full Text] [Related]
6. Effects of site-directed mutagenesis at residues cysteine-31 and cysteine-184 on lecithin-cholesterol acyltransferase activity. Francone OL; Fielding CJ Proc Natl Acad Sci U S A; 1991 Mar; 88(5):1716-20. PubMed ID: 1848009 [TBL] [Abstract][Full Text] [Related]
7. Effects of carboxy-terminal truncation on human lecithin:cholesterol acyltransferase activity. Francone OL; Evangelista L; Fielding CJ J Lipid Res; 1996 Jul; 37(7):1609-15. PubMed ID: 8827531 [TBL] [Abstract][Full Text] [Related]
8. Amino acids 149 and 294 of human lecithin:cholesterol acyltransferase affect fatty acyl specificity. Zhao Y; Gebre AK; Parks JS J Lipid Res; 2004 Dec; 45(12):2310-6. PubMed ID: 15375182 [TBL] [Abstract][Full Text] [Related]
9. Cloning and in vitro expression of rat lecithin:cholesterol acyltransferase. Wang J; Gebre AK; Anderson RA; Parks JS Biochim Biophys Acta; 1997 Jun; 1346(3):207-11. PubMed ID: 9219904 [TBL] [Abstract][Full Text] [Related]
10. Deletion of N-terminal amino acids from human lecithin:cholesterol acyltransferase differentially affects enzyme activity toward alpha- and beta-substrate lipoproteins. Vickaryous NK; Teh EM; Stewart B; Dolphin PJ; Too CK; McLeod RS Biochim Biophys Acta; 2003 Mar; 1646(1-2):164-72. PubMed ID: 12637024 [TBL] [Abstract][Full Text] [Related]
11. Site-specific detection and structural characterization of the glycosylation of human plasma proteins lecithin:cholesterol acyltransferase and apolipoprotein D using HPLC/electrospray mass spectrometry and sequential glycosidase digestion. Schindler PA; Settineri CA; Collet X; Fielding CJ; Burlingame AL Protein Sci; 1995 Apr; 4(4):791-803. PubMed ID: 7613477 [TBL] [Abstract][Full Text] [Related]
12. Roles of cysteines in human lecithin:cholesterol acyltransferase. Qu SJ; Fan HZ; Blanco-Vaca F; Pownall HJ Biochemistry; 1993 Mar; 32(12):3089-94. PubMed ID: 8457570 [TBL] [Abstract][Full Text] [Related]
13. Amino acid residue 149 of lecithin:cholesterol acyltransferase determines phospholipase A2 and transacylase fatty acyl specificity. Wang J; Gebre AK; Anderson RA; Parks JS J Biol Chem; 1997 Jan; 272(1):280-6. PubMed ID: 8995259 [TBL] [Abstract][Full Text] [Related]
14. Modulation of the positional specificity of lecithin-cholesterol acyltransferase by the acyl group composition of its phosphatidylcholine substrate: role of the sn-1-acyl group. Liu M; Subramanian VS; Subbaiah PV Biochemistry; 1998 Sep; 37(39):13626-33. PubMed ID: 9753449 [TBL] [Abstract][Full Text] [Related]
15. Analysis of human lecithin-cholesterol acyltransferase activity by carboxyl-terminal truncation. Lee YP; Adimoolam S; Liu M; Subbaiah PV; Glenn K; Jonas A Biochim Biophys Acta; 1997 Feb; 1344(3):250-61. PubMed ID: 9059515 [TBL] [Abstract][Full Text] [Related]
16. Glycosylation structure and enzyme activity of lecithin:cholesterol acyltransferase from human plasma, HepG2 cells, and baculoviral and Chinese hamster ovary cell expression systems. Miller KR; Wang J; Sorci-Thomas M; Anderson RA; Parks JS J Lipid Res; 1996 Mar; 37(3):551-61. PubMed ID: 8728318 [TBL] [Abstract][Full Text] [Related]
17. Effects of site-directed mutagenesis on the serine residues of human lecithin:cholesterol acyltransferase. Qu SJ; Fan HZ; Blanco-Vaca F; Pownall HJ Lipids; 1994 Dec; 29(12):803-9. PubMed ID: 7854004 [TBL] [Abstract][Full Text] [Related]
18. Effects of inhibitors of N-linked oligosaccharide processing on the secretion, stability, and activity of lecithin:cholesterol acyltransferase. Collet X; Fielding CJ Biochemistry; 1991 Apr; 30(13):3228-34. PubMed ID: 1901219 [TBL] [Abstract][Full Text] [Related]
19. Regulation of the activity and fatty acid specificity of lecithin-cholesterol acyltransferase by sphingomyelin and its metabolites, ceramide and ceramide phosphate. Subbaiah PV; Horvath P; Achar SB Biochemistry; 2006 Apr; 45(15):5029-38. PubMed ID: 16605271 [TBL] [Abstract][Full Text] [Related]
20. Fish eye syndrome: a molecular defect in the lecithin-cholesterol acyltransferase (LCAT) gene associated with normal alpha-LCAT-specific activity. Implications for classification and prognosis. Klein HG; Santamarina-Fojo S; Duverger N; Clerc M; Dumon MF; Albers JJ; Marcovina S; Brewer HB J Clin Invest; 1993 Jul; 92(1):479-85. PubMed ID: 8326012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]