These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8443690)

  • 1. Immobilized DPP and other proteins modify OCP formation.
    Doi Y; Horiguchi T; Kim SH; Moriwaki Y; Wakamatsu N; Adachi M; Shigeta H; Sasaki S; Shimokawa H
    Calcif Tissue Int; 1993 Feb; 52(2):139-45. PubMed ID: 8443690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of non-collagenous proteins on the formation of apatite in calcium beta-glycerophosphate solutions.
    Doi Y; Horiguchi T; Kim SH; Moriwaki Y; Wakamatsu N; Adachi M; Ibaraki K; Moriyama K; Sasaki S; Shimokawa H
    Arch Oral Biol; 1992 Jan; 37(1):15-21. PubMed ID: 1596204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of dentin phosphoprotein on inducing mineralization].
    Luo SJ; Li YJ; Wan L; Su Y
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2003 Jan; 38(1):56-8. PubMed ID: 12760780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Octacalcium phosphate formation in vitro: implications for bone formation.
    Cheng PT
    Calcif Tissue Int; 1985 Jan; 37(1):91-4. PubMed ID: 3922603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic octacalcium phosphate-enhanced reparative dentine formation via induction of odontoblast differentiation.
    Wang X; Suzawa T; Miyauchi T; Zhao B; Yasuhara R; Anada T; Nakamura M; Suzuki O; Kamijo R
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1310-20. PubMed ID: 23355511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization.
    Suzuki O; Imaizumi H; Kamakura S; Katagiri T
    Curr Med Chem; 2008; 15(3):305-13. PubMed ID: 18288986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Interface science in formation of biominerals and biomolecules].
    Suzuki O
    Clin Calcium; 2004 Jun; 14(6):9-15. PubMed ID: 15577048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent surface structure induces unique epitaxial overgrowth of metastable octacalcium phosphate on stable hydroxyapatite at critical fluoride concentration.
    Onuma K; Saito MM; Yamakoshi Y; Iijima M; Sogo Y; Momma K
    Acta Biomater; 2021 Apr; 125():333-344. PubMed ID: 33631397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strontium substitution in bioactive calcium phosphates: a first-principles study.
    Matsunaga K; Murata H
    J Phys Chem B; 2009 Mar; 113(11):3584-9. PubMed ID: 19243110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apatite induction by insoluble dentin collagen.
    Saito T; Yamauchi M; Crenshaw MA
    J Bone Miner Res; 1998 Feb; 13(2):265-70. PubMed ID: 9495520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of Serum Albumin onto Octacalcium Phosphate in Supersaturated Solutions Regarding Calcium Phosphate Phases.
    Hamai R; Tsuchiya K; Suzuki O
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31340468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dentin phosphoprotein sequence motifs and molecular modeling: conformational adaptations to mineral crystals.
    Dahlin S; Angström J; Linde A
    Eur J Oral Sci; 1998 Jan; 106 Suppl 1():239-48. PubMed ID: 9541232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineral induction by immobilized phosphoproteins.
    Saito T; Arsenault AL; Yamauchi M; Kuboki Y; Crenshaw MA
    Bone; 1997 Oct; 21(4):305-11. PubMed ID: 9315333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nucleation and growth of calcium phosphate crystals at protein and phosphatidylserine liposome surfaces.
    Nancollas GH; Tsortos A; Zieba A
    Scanning Microsc; 1996; 10(2):499-507; discussion 508. PubMed ID: 9813627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro apatite induction by osteopontin: interfacial energy for hydroxyapatite nucleation on osteopontin.
    Ito S; Saito T; Amano K
    J Biomed Mater Res A; 2004 Apr; 69(1):11-6. PubMed ID: 14999746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of octacalcium phosphate and subsequent transformation to hydroxyapatite at low supersaturation: a model for cartilage calcification.
    Cheng PT
    Calcif Tissue Int; 1987 Jun; 40(6):339-43. PubMed ID: 3038281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of F- on apatite-octacalcium phosphate intergrowth and crystal morphology in a model system of tooth enamel formation.
    Iijima M; Tohda H; Suzuki H; Yanagisawa T; Moriwaki Y
    Calcif Tissue Int; 1992 Apr; 50(4):357-61. PubMed ID: 1571848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First experimental evidence for human dentine crystal formation involving conversion of octacalcium phosphate to hydroxyapatite.
    Bodier-Houllé P; Steuer P; Voegel JC; Cuisinier FJ
    Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 2):1377-81. PubMed ID: 10089513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of nucleation in transformation of octacalcium phosphate to hydroxyapatite.
    Ito N; Kamitakahara M; Yoshimura M; Ioku K
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():121-6. PubMed ID: 24857473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Octacalcium phosphate: osteoconductivity and crystal chemistry.
    Suzuki O
    Acta Biomater; 2010 Sep; 6(9):3379-87. PubMed ID: 20371385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.