These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 8444148)

  • 1. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal.
    Phillips SA; Thornalley PJ
    Eur J Biochem; 1993 Feb; 212(1):101-5. PubMed ID: 8444148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism for the formation of methylglyoxal from triosephosphates.
    Richard JP
    Biochem Soc Trans; 1993 May; 21(2):549-53. PubMed ID: 8359530
    [No Abstract]   [Full Text] [Related]  

  • 3. Reaction of triosephosphate isomerase with L-glyceraldehyde 3-phosphate and triose 1,2-enediol 3-phosphate.
    Richard JP
    Biochemistry; 1985 Feb; 24(4):949-53. PubMed ID: 3995002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of methylglyoxal synthase from goat liver.
    Ray S; Ray M
    J Biol Chem; 1981 Jun; 256(12):6230-3. PubMed ID: 7240200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction's physiological significance.
    Richard JP
    Biochemistry; 1991 May; 30(18):4581-5. PubMed ID: 2021650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis: a potential cause of plant diabetes.
    Takagi D; Inoue H; Odawara M; Shimakawa G; Miyake C
    Plant Cell Physiol; 2014 Feb; 55(2):333-40. PubMed ID: 24406631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the Enzymatic Synthesis of 4-(Hydroxymethyl)-2- furancarboxaldehyde-phosphate (4-HFC-P) from Glyceraldehyde-3-phosphate Catalyzed by 4-HFC-P Synthase.
    Wang Y; Jones MK; Xu H; Ray WK; White RH
    Biochemistry; 2015 May; 54(19):2997-3008. PubMed ID: 25905665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylglyoxal formation in rat liver cells.
    Sato J; Wang YM; van Eys J
    J Biol Chem; 1980 Mar; 255(5):2046-50. PubMed ID: 7354075
    [No Abstract]   [Full Text] [Related]  

  • 9. Interconversion of D-fructose 1,6-bisphosphate and triose phosphates in human erythrocytes.
    Maggetto C; Manuel y Keenoy B; Zähner D; Bodur H; Sener A; Malaisse WJ
    Biochim Biophys Acta; 1992 May; 1121(1-2):31-40. PubMed ID: 1599948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour.
    Weber J; Kayser A; Rinas U
    Microbiology (Reading); 2005 Mar; 151(Pt 3):707-716. PubMed ID: 15758217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triose phosphate isomerase from the blood fluke Schistosoma mansoni: biochemical characterisation of a potential drug and vaccine target.
    Zinsser VL; Farnell E; Dunne DW; Timson DJ
    FEBS Lett; 2013 Nov; 587(21):3422-7. PubMed ID: 24070897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A metabolic bypass of the triosephosphate isomerase reaction.
    Desai KK; Miller BG
    Biochemistry; 2008 Aug; 47(31):7983-5. PubMed ID: 18620424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoring a metabolic pathway.
    Richard JP
    ACS Chem Biol; 2008 Oct; 3(10):605-7. PubMed ID: 18928248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partition of intermediates of triosephosphate isomerase: slow conformational changes precede enolization and follow product release.
    Rose IA; Iyengar R
    Biochemistry; 1982 Mar; 21(7):1591-7. PubMed ID: 7044418
    [No Abstract]   [Full Text] [Related]  

  • 15. Failure to confirm previous observations on triosephosphate isomerase intermediate and bound substrate complexes.
    Rose IA
    Biochemistry; 1984 Nov; 23(24):5893-4. PubMed ID: 6525338
    [No Abstract]   [Full Text] [Related]  

  • 16. Substrate product equilibrium on a reversible enzyme, triosephosphate isomerase.
    Rozovsky S; McDermott AE
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2080-5. PubMed ID: 17287353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-oxidative synthesis of pentose 5-phosphate from hexose 6-phosphate and triose phosphate by the L-type pentose pathway.
    Williams JF; Blackmore PF
    Int J Biochem; 1983; 15(6):797-816. PubMed ID: 6862092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of the accumulation of triosephosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro.
    Thornalley PJ; Jahan I; Ng R
    J Biochem; 2001 Apr; 129(4):543-9. PubMed ID: 11275553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of enzymatic D-xylulose 5-phosphate synthesis.
    Shaeri J; Wright I; Rathbone EB; Wohlgemuth R; Woodley JM
    Biotechnol Bioeng; 2008 Nov; 101(4):761-7. PubMed ID: 18553501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The conversion of dihydroxyacetone phosphate to methylglyoxal and inorganic phosphate by methylglyoxal synthase.
    Yuan PM; Gracy RW
    Arch Biochem Biophys; 1977 Sep; 183(1):1-6. PubMed ID: 334078
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.