These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 8444148)

  • 41. Ab initio models for receptor-ligand interactions in proteins. 4. Model assembly study of the catalytic mechanism of triosephosphate isomerase.
    Peräkylä M; Pakkanen TA
    Proteins; 1996 Jun; 25(2):225-36. PubMed ID: 8811738
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methylglyoxal production in human blood.
    Brandt RB; Siegel SA
    Ciba Found Symp; 1978; (67):211-23. PubMed ID: 259500
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The aldolase-substrate intermediates and their interaction with glyceraldehyde-3-phosphate dehydrogenase in a reconstructed glycolytic system.
    Grazi E; Trombetta G
    Eur J Biochem; 1980 Jun; 107(2):369-73. PubMed ID: 7398648
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Liberation of the triosephosphate isomerase reaction intermediate and its trapping by isomerase, yeast aldolase, and methylglyoxal synthase.
    Iyengar R; Rose IA
    Biochemistry; 1981 Mar; 20(5):1229-35. PubMed ID: 7013791
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibition of the glycolytic pathway by methylglyoxal in human platelets.
    Leoncini G; Maresca M; Buzzi E
    Cell Biochem Funct; 1989 Jan; 7(1):65-70. PubMed ID: 2752537
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methylglyoxal reduces mitochondrial potential and activates Bax and caspase-3 in neurons: Implications for Alzheimer's disease.
    Tajes M; Eraso-Pichot A; Rubio-Moscardó F; Guivernau B; Bosch-Morató M; Valls-Comamala V; Muñoz FJ
    Neurosci Lett; 2014 Sep; 580():78-82. PubMed ID: 25102327
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Secondary H/T and D/T isotope effects in enzymatic enolization reactions. Coupled motion and tunneling in the triosephosphate isomerase reaction.
    Alston WC; Kanska M; Murray CJ
    Biochemistry; 1996 Oct; 35(39):12873-81. PubMed ID: 8841131
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energetics of triosephosphate isomerase: the nature of the proton transfer between the catalytic base and solvent water.
    Fisher LM; Albery WJ; Knowles JR
    Biochemistry; 1976 Dec; 15(25):5621-6. PubMed ID: 999837
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proton transfer in the mechanism of triosephosphate isomerase.
    Harris TK; Cole RN; Comer FI; Mildvan AS
    Biochemistry; 1998 Nov; 37(47):16828-38. PubMed ID: 9843453
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational modeling of the catalytic reaction in triosephosphate isomerase.
    Guallar V; Jacobson M; McDermott A; Friesner RA
    J Mol Biol; 2004 Mar; 337(1):227-39. PubMed ID: 15001364
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism.
    Nickbarg EB; Davenport RC; Petsko GA; Knowles JR
    Biochemistry; 1988 Aug; 27(16):5948-60. PubMed ID: 2847777
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evolution of enzyme function and the development of catalytic efficiency.
    Albery WJ; Knowles JR
    Biochemistry; 1976 Dec; 15(25):5631-40. PubMed ID: 999839
    [No Abstract]   [Full Text] [Related]  

  • 53. Synthesis of phosphono analogues of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate.
    Page P; Blonski C; Périé J
    Bioorg Med Chem; 1999 Jul; 7(7):1403-12. PubMed ID: 10465414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A simple approach to identify the mechanism of intermediate transfer: enzyme system related to triose phosphate metabolism.
    Orosz F; Ovádi J
    Biochim Biophys Acta; 1987 Sep; 915(1):53-9. PubMed ID: 3620481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystallographic studies of movement within proteins.
    Phillips DC
    Biochem Soc Symp; 1981; (46):1-15. PubMed ID: 7039619
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The glutathione-dependent glyoxalase pathway in the yeast Saccharomyces cerevisiae.
    Penninckx MJ; Jaspers CJ; Legrain MJ
    J Biol Chem; 1983 May; 258(10):6030-6. PubMed ID: 6343368
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increased formation of methylglyoxal and protein glycation, oxidation and nitrosation in triosephosphate isomerase deficiency.
    Ahmed N; Battah S; Karachalias N; Babaei-Jadidi R; Horányi M; Baróti K; Hollan S; Thornalley PJ
    Biochim Biophys Acta; 2003 Oct; 1639(2):121-32. PubMed ID: 14559119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic correction of triose phosphate isomerase deficiency in vitro by complementation.
    Ationu A; Humphries A; Bellingham A; Layton M
    Biochem Biophys Res Commun; 1997 Mar; 232(2):528-31. PubMed ID: 9125215
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crh, the paralogue of the phosphocarrier protein HPr, controls the methylglyoxal bypass of glycolysis in Bacillus subtilis.
    Landmann JJ; Busse RA; Latz JH; Singh KD; Stülke J; Görke B
    Mol Microbiol; 2011 Nov; 82(3):770-87. PubMed ID: 21992469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contribution of phosphate intrinsic binding energy to the enzymatic rate acceleration for triosephosphate isomerase.
    Amyes TL; O'Donoghue AC; Richard JP
    J Am Chem Soc; 2001 Nov; 123(45):11325-6. PubMed ID: 11697989
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.