These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 8444313)
1. The effect of orotic acid treatment on the energy and carbohydrate metabolism of the hypertrophying rat heart. Donohoe JA; Rosenfeldt FL; Munsch CM; Williams JF Int J Biochem; 1993 Feb; 25(2):163-82. PubMed ID: 8444313 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of cardioprotective effect of orotic acid. Rosenfeldt FL; Richards SM; Lin Z; Pepe S; Conyers RA Cardiovasc Drugs Ther; 1998 Sep; 12 Suppl 2():159-70. PubMed ID: 9794090 [TBL] [Abstract][Full Text] [Related]
3. Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine. El Alaoui-Talibi Z; Guendouz A; Moravec M; Moravec J Am J Physiol; 1997 Apr; 272(4 Pt 2):H1615-24. PubMed ID: 9139943 [TBL] [Abstract][Full Text] [Related]
4. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats. Opie LH; Mansford KR; Owen P Biochem J; 1971 Sep; 124(3):475-90. PubMed ID: 5135234 [TBL] [Abstract][Full Text] [Related]
6. Improvement of the energy supply and contractile function in normal and ischemic rat hearts by dietary orotic acid. Pôrto LC; de Castro CH; Savergnini SS; Santos SH; Ferreira AV; Cordeiro LM; Sobrinho DB; Santos RA; de Almeida AP; Botion LM Life Sci; 2012 Apr; 90(13-14):476-83. PubMed ID: 22285839 [TBL] [Abstract][Full Text] [Related]
7. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor. Obrosova I; Faller A; Burgan J; Ostrow E; Williamson JR Curr Eye Res; 1997 Jan; 16(1):34-43. PubMed ID: 9043821 [TBL] [Abstract][Full Text] [Related]
8. On the interdependence of ketone body oxidation, glycogen content, glycolysis and energy metabolism in the heart. Kadir AA; Stubbs BJ; Chong CR; Lee H; Cole M; Carr C; Hauton D; McCullagh J; Evans RD; Clarke K J Physiol; 2023 Apr; 601(7):1207-1224. PubMed ID: 36799478 [TBL] [Abstract][Full Text] [Related]
9. Energy metabolism response to calcium activation in isolated rat hearts during development and regression of T3-induced hypertrophy. Lortet S; Heckmann M; Ray A; Rossi A; Aussedat J; Grably S; Zimmer HG Mol Cell Biochem; 1995 Oct; 151(2):99-106. PubMed ID: 8569765 [TBL] [Abstract][Full Text] [Related]
10. Alterations in energy metabolism of hypertrophied rat cardiomyocytes: influence of propionyl-L-carnitine. Torielli L; Conti F; Cinato E; Ceppi E; Anversa P; Bianchi G; Ferrari P J Cardiovasc Pharmacol; 1995 Sep; 26(3):372-80. PubMed ID: 8583777 [TBL] [Abstract][Full Text] [Related]
11. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Allard MF; Schönekess BO; Henning SL; English DR; Lopaschuk GD Am J Physiol; 1994 Aug; 267(2 Pt 2):H742-50. PubMed ID: 8067430 [TBL] [Abstract][Full Text] [Related]
12. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Sorokina N; O'Donnell JM; McKinney RD; Pound KM; Woldegiorgis G; LaNoue KF; Ballal K; Taegtmeyer H; Buttrick PM; Lewandowski ED Circulation; 2007 Apr; 115(15):2033-41. PubMed ID: 17404155 [TBL] [Abstract][Full Text] [Related]
13. Energy metabolism in normal and hypertrophied right ventricle of the ferret heart. Do E; Baudet S; Verdys M; Touzeau C; Bailly F; Lucas-Héron B; Sagniez M; Rossi A; Noireaud J J Mol Cell Cardiol; 1997 Jul; 29(7):1903-13. PubMed ID: 9236144 [TBL] [Abstract][Full Text] [Related]
14. Diabetes-induced changes in lens antioxidant status, glucose utilization and energy metabolism: effect of DL-alpha-lipoic acid. Obrosova I; Cao X; Greene DA; Stevens MJ Diabetologia; 1998 Dec; 41(12):1442-50. PubMed ID: 9867211 [TBL] [Abstract][Full Text] [Related]
15. Contribution of glycogen and exogenous glucose to glucose metabolism during ischemia in the hypertrophied rat heart. Schönekess BO; Allard MF; Henning SL; Wambolt RB; Lopaschuk GD Circ Res; 1997 Oct; 81(4):540-9. PubMed ID: 9314835 [TBL] [Abstract][Full Text] [Related]
16. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states. Jong YS; Davis EJ Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674 [TBL] [Abstract][Full Text] [Related]
17. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens. Obrosova IG; Stevens MJ Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971 [TBL] [Abstract][Full Text] [Related]
18. Recovery of glycolysis and oxidative metabolism during postischemic reperfusion of hypertrophied rat hearts. Schönekess BO; Allard MF; Lopaschuk GD Am J Physiol; 1996 Aug; 271(2 Pt 2):H798-805. PubMed ID: 8770125 [TBL] [Abstract][Full Text] [Related]
19. Energy metabolism and mechanical recovery after cardioplegia in moderately hypertrophied rats. Smolenski RT; Jayakumar J; Seymour AM; Yacoub MH Mol Cell Biochem; 1998 Mar; 180(1-2):137-43. PubMed ID: 9546640 [TBL] [Abstract][Full Text] [Related]
20. Propionyl L-carnitine improvement of hypertrophied rat heart function is associated with an increase in cardiac efficiency. Schönekess BO; Allard MF; Lopaschuk GD Eur J Pharmacol; 1995 Nov; 286(2):155-66. PubMed ID: 8605952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]