These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8444324)

  • 41. Agreement of spatio-temporal gait parameters between a vertical ground reaction force decomposition algorithm and a motion capture system.
    Veilleux LN; Raison M; Rauch F; Robert M; Ballaz L
    Gait Posture; 2016 Jan; 43():257-64. PubMed ID: 26552654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The validity of the GaitRite and the Functional Ambulation Performance scoring system in the analysis of Parkinson gait.
    Nelson AJ; Zwick D; Brody S; Doran C; Pulver L; Rooz G; Sadownick M; Nelson R; Rothman J
    NeuroRehabilitation; 2002; 17(3):255-62. PubMed ID: 12237507
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of the upright postural sway of children.
    Usui N; Maekawa K; Hirasawa Y
    Dev Med Child Neurol; 1995 Nov; 37(11):985-96. PubMed ID: 8566459
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Foot contact timing and the effect of walking speed in normal childhood and adult gait.
    Shiavi R; Hunt MA; Waggoner M
    Med Biol Eng Comput; 1988 Jul; 26(4):342-8. PubMed ID: 3255839
    [No Abstract]   [Full Text] [Related]  

  • 45. A simplified technique for determining foot progression angle in children 4 to 16 years of age.
    Lösel S; Burgess-Milliron MJ; Micheli LJ; Edington CJ
    J Pediatr Orthop; 1996; 16(5):570-4. PubMed ID: 8865038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A model to calculate the progression of the centre of pressure under the foot during gait analysis.
    Louey MGY; Mudge A; Wojciechowski E; Sangeux M
    Gait Posture; 2017 Sep; 57():147-153. PubMed ID: 28641159
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of gait in the normal child.
    Norlin R; Odenrick P; Sandlund B
    J Pediatr Orthop; 1981; 1(3):261-6. PubMed ID: 7334104
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessment of abnormalities of gait in children from measurements of the instantaneous foot velocities during the swing phase.
    Law HT; Minns RA
    Child Care Health Dev; 1987; 13(5):311-27. PubMed ID: 3677330
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Validation of a commercial inertial sensor system for spatiotemporal gait measurements in children.
    Lanovaz JL; Oates AR; Treen TT; Unger J; Musselman KE
    Gait Posture; 2017 Jan; 51():14-19. PubMed ID: 27693956
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Data set of healthy old people assessed for three walking conditions using accelerometric and opto-electronic methods.
    Gillain S; Boutaayamou M; Dardenne N; Schwartz C; Demonceau M; Gerontitis C; Depierreux F; Salmon E; Garraux G; Bruyère O; Brüls O; Croisier JL; Petermans J
    Aging Clin Exp Res; 2017 Dec; 29(6):1201-1209. PubMed ID: 28247211
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comprehensive non-dimensional normalization of gait data.
    Pinzone O; Schwartz MH; Baker R
    Gait Posture; 2016 Feb; 44():68-73. PubMed ID: 27004635
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Left-right differences on timed motor examination in children.
    Roeder MB; Mahone EM; Gidley Larson J; Mostofsky SH; Cutting LE; Goldberg MC; Denckla MB
    Child Neuropsychol; 2008 May; 14(3):249-62. PubMed ID: 17852124
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in walking pattern between five and six years of age.
    Gómez Pellico L; Rodríguez Torres R; Dankloff Mora C
    Dev Med Child Neurol; 1995 Sep; 37(9):800-6. PubMed ID: 7589862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Static and dynamic plantar pressure measurements in adolescents].
    Tuna H; Yildiz M; Celtik C; Kokino S
    Acta Orthop Traumatol Turc; 2004; 38(3):200-5. PubMed ID: 15347920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial and Temporal Control Contribute to Step Length Asymmetry During Split-Belt Adaptation and Hemiparetic Gait.
    Finley JM; Long A; Bastian AJ; Torres-Oviedo G
    Neurorehabil Neural Repair; 2015 Sep; 29(8):786-95. PubMed ID: 25589580
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gait parameters database for young children: The influences of age and walking speed.
    Van Hamme A; El Habachi A; Samson W; Dumas R; Chèze L; Dohin B
    Clin Biomech (Bristol, Avon); 2015 Jul; 30(6):572-7. PubMed ID: 25911204
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Correlating factors and clinical significance of flexible flatfoot in preschool children.
    Lin CJ; Lai KA; Kuan TS; Chou YL
    J Pediatr Orthop; 2001; 21(3):378-82. PubMed ID: 11371824
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Temporal and spatial gait parameters analysis in non-pathological Mexican children.
    Moreno-Hernández A; Rodríguez-Reyes G; Quiñones-Urióstegui I; Núñez-Carrera L; Pérez-Sanpablo AI
    Gait Posture; 2010 May; 32(1):78-81. PubMed ID: 20378352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.