These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8444365)

  • 1. Automated detection and quantification of retinal exudates.
    Phillips R; Forrester J; Sharp P
    Graefes Arch Clin Exp Ophthalmol; 1993 Feb; 231(2):90-4. PubMed ID: 8444365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.
    Jaya T; Dheeba J; Singh NA
    J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic image processing algorithm to detect hard exudates based on mixture models.
    Sánchez CI; Mayo A; García M; López MI; Hornero R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4453-6. PubMed ID: 17945839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis.
    Sánchez CI; Hornero R; López MI; Aboy M; Poza J; Abásolo D
    Med Eng Phys; 2008 Apr; 30(3):350-7. PubMed ID: 17556004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image analysis of fundus photographs. The detection and measurement of exudates associated with diabetic retinopathy.
    Ward NP; Tomlinson S; Taylor CJ
    Ophthalmology; 1989 Jan; 96(1):80-6. PubMed ID: 2919052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated identification of diabetic retinal exudates in digital colour images.
    Osareh A; Mirmehdi M; Thomas B; Markham R
    Br J Ophthalmol; 2003 Oct; 87(10):1220-3. PubMed ID: 14507751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entoptic evaluation of diabetic retinopathy.
    Applegate RA; Bradley A; van Heuven WA; Lee BL; Garcia CA
    Invest Ophthalmol Vis Sci; 1997 Apr; 38(5):783-91. PubMed ID: 9112972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of digital nonmydriatic fundus imaging with standard 35-millimeter slides for diabetic retinopathy.
    Lim JI; LaBree L; Nichols T; Cardenas I
    Ophthalmology; 2000 May; 107(5):866-70. PubMed ID: 10811076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis.
    Niemeijer M; van Ginneken B; Russell SR; Suttorp-Schulten MS; Abràmoff MD
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2260-7. PubMed ID: 17460289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-automated quantification of hard exudates in colour fundus photographs diagnosed with diabetic retinopathy.
    Marupally AG; Vupparaboina KK; Peguda HK; Richhariya A; Jana S; Chhablani J
    BMC Ophthalmol; 2017 Sep; 17(1):172. PubMed ID: 28931389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decision support system for the detection and grading of hard exudates from color fundus photographs.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    J Biomed Opt; 2011 Nov; 16(11):116001. PubMed ID: 22112106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weighted ensemble based automatic detection of exudates in fundus photographs.
    Prentasic P; Loncaric S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():138-41. PubMed ID: 25569916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy.
    Akram MU; Tariq A; Anjum MA; Javed MY
    Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy.
    Dupas B; Walter T; Erginay A; Ordonez R; Deb-Joardar N; Gain P; Klein JC; Massin P
    Diabetes Metab; 2010 Jun; 36(3):213-20. PubMed ID: 20219404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetic retinopathy screening using digital non-mydriatic fundus photography and automated image analysis.
    Hansen AB; Hartvig NV; Jensen MS; Borch-Johnsen K; Lund-Andersen H; Larsen M
    Acta Ophthalmol Scand; 2004 Dec; 82(6):666-72. PubMed ID: 15606461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated detection of diabetic retinopathy on digital fundus images.
    Sinthanayothin C; Boyce JF; Williamson TH; Cook HL; Mensah E; Lal S; Usher D
    Diabet Med; 2002 Feb; 19(2):105-12. PubMed ID: 11874425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer classification of nonproliferative diabetic retinopathy.
    Lee SC; Lee ET; Wang Y; Klein R; Kingsley RM; Warn A
    Arch Ophthalmol; 2005 Jun; 123(6):759-64. PubMed ID: 15955976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts.
    Lee SC; Lee ET; Kingsley RM; Wang Y; Russell D; Klein R; Warn A
    Arch Ophthalmol; 2001 Apr; 119(4):509-15. PubMed ID: 11296016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated detection and quantification of microaneurysms in fluorescein angiograms.
    Spencer T; Phillips RP; Sharp PF; Forrester JV
    Graefes Arch Clin Exp Ophthalmol; 1992; 230(1):36-41. PubMed ID: 1547965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated detection of exudates for diabetic retinopathy screening.
    Fleming AD; Philip S; Goatman KA; Williams GJ; Olson JA; Sharp PF
    Phys Med Biol; 2007 Dec; 52(24):7385-96. PubMed ID: 18065845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.