These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 8444647)
1. A method for multiple synchronous collection of airborne organisms and the effects on colony counts of various processing procedures. Taylor GJ; Leeming JP J Appl Bacteriol; 1993 Feb; 74(2):174-80. PubMed ID: 8444647 [TBL] [Abstract][Full Text] [Related]
2. Lessons from the organization of a proficiency testing program in food microbiology by interlaboratory comparison: analytical methods in use, impact of methods on bacterial counts and measurement uncertainty of bacterial counts. Augustin JC; Carlier V Food Microbiol; 2006 Feb; 23(1):1-38. PubMed ID: 16942983 [TBL] [Abstract][Full Text] [Related]
3. Nonrecovery of varying proportions of viable bacteria during spread plating governed by the extent of spreader usage and proposal for an alternate spotting-spreading approach to maximize the CFU. Thomas P; Sekhar AC; Mujawar MM J Appl Microbiol; 2012 Aug; 113(2):339-50. PubMed ID: 22563785 [TBL] [Abstract][Full Text] [Related]
4. Assessment of airborne bacterial contamination of clean wounds: results in a tissue model. Taylor GJ; Leeming JP; Bannister GC J Hosp Infect; 1992 Nov; 22(3):241-9. PubMed ID: 1283398 [TBL] [Abstract][Full Text] [Related]
5. A simple and fast method for determining colony forming units. Sieuwerts S; de Bok FA; Mols E; de vos WM; Vlieg JE Lett Appl Microbiol; 2008 Oct; 47(4):275-8. PubMed ID: 18778376 [TBL] [Abstract][Full Text] [Related]
6. Physical impaction injury effects on bacterial cells during spread plating influenced by cell characteristics of the organisms. Thomas P; Mujawar MM; Sekhar AC; Upreti R J Appl Microbiol; 2014 Apr; 116(4):911-22. PubMed ID: 24314107 [TBL] [Abstract][Full Text] [Related]
7. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices. Godish D; Godish T J Occup Environ Hyg; 2008 Feb; 5(2):100-6. PubMed ID: 18085480 [TBL] [Abstract][Full Text] [Related]
8. Factors influencing microbial colonies in the air of operating rooms. Fu Shaw L; Chen IH; Chen CS; Wu HH; Lai LS; Chen YY; Wang F BMC Infect Dis; 2018 Jan; 18(1):4. PubMed ID: 29291707 [TBL] [Abstract][Full Text] [Related]
9. Effect of mobile laminar airflow units on airborne bacterial contamination during neurosurgical procedures. von Vogelsang AC; Förander P; Arvidsson M; Löwenhielm P J Hosp Infect; 2018 Jul; 99(3):271-278. PubMed ID: 29580895 [TBL] [Abstract][Full Text] [Related]
10. Detection of airborne microbes in a composting facility by cultivation based and cultivation-independent methods. Albrecht A; Witzenberger R; Bernzen U; Jäckel U Ann Agric Environ Med; 2007; 14(1):81-5. PubMed ID: 17655182 [TBL] [Abstract][Full Text] [Related]
11. Effect of aerosolization on culturability and viability of gram-negative bacteria. Heidelberg JF; Shahamat M; Levin M; Rahman I; Stelma G; Grim C; Colwell RR Appl Environ Microbiol; 1997 Sep; 63(9):3585-8. PubMed ID: 9293010 [TBL] [Abstract][Full Text] [Related]
12. Bacterial and fungal counts in hospital air: comparative yields for 4 sieve impactor air samplers with 2 culture media. Gangneux JP; Robert-Gangneux F; Gicquel G; Tanquerel JJ; Chevrier S; Poisson M; Aupée M; Guiguen C Infect Control Hosp Epidemiol; 2006 Dec; 27(12):1405-8. PubMed ID: 17152043 [TBL] [Abstract][Full Text] [Related]
13. Enumeration of airborne bacteria and fungi using solid phase cytometry. Vanhee LM; Nelis HJ; Coenye T J Microbiol Methods; 2008 Jan; 72(1):12-9. PubMed ID: 18054099 [TBL] [Abstract][Full Text] [Related]
14. Air contamination for predicting wound contamination in clean surgery: A large multicenter study. Birgand G; Toupet G; Rukly S; Antoniotti G; Deschamps MN; Lepelletier D; Pornet C; Stern JB; Vandamme YM; van der Mee-Marquet N; Timsit JF; Lucet JC Am J Infect Control; 2015 May; 43(5):516-21. PubMed ID: 25752955 [TBL] [Abstract][Full Text] [Related]
15. Quantification and identification of culturable airborne bacteria from duck houses. Martin E; Kämpfer P; Jäckel U Ann Occup Hyg; 2010 Mar; 54(2):217-27. PubMed ID: 20042465 [TBL] [Abstract][Full Text] [Related]
16. Correlation between surface and air counts of particles carrying aerobic bacteria in operating rooms with turbulent ventilation: an experimental study. Friberg B; Friberg S; Burman LG J Hosp Infect; 1999 May; 42(1):61-8. PubMed ID: 10363212 [TBL] [Abstract][Full Text] [Related]
17. A randomised prospective comparison of Rotecno versus new Gore occlusive surgical gowns using bacterial air counts in ultraclean air. Gulihar A; Taub NA; Taylor GJ J Hosp Infect; 2009 Sep; 73(1):54-7. PubMed ID: 19646783 [TBL] [Abstract][Full Text] [Related]
18. Microliter spotting and micro-colony observation: A rapid and simple approach for counting bacterial colony forming units. Bhuyan S; Yadav M; Giri SJ; Begum S; Das S; Phukan A; Priyadarshani P; Sarkar S; Jayswal A; Kabyashree K; Kumar A; Mandal M; Ray SK J Microbiol Methods; 2023 Apr; 207():106707. PubMed ID: 36931327 [TBL] [Abstract][Full Text] [Related]
19. Variability of airborne microflora in a hospital ward within a period of one year. Augustowska M; Dutkiewicz J Ann Agric Environ Med; 2006; 13(1):99-106. PubMed ID: 16841880 [TBL] [Abstract][Full Text] [Related]
20. Continuous monitoring of aerial bioburden within intensive care isolation rooms and identification of high-risk activities. Dougall LR; Booth MG; Khoo E; Hood H; MacGregor SJ; Anderson JG; Timoshkin IV; Maclean M J Hosp Infect; 2019 Oct; 103(2):185-192. PubMed ID: 31145931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]