These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 8444681)

  • 41. Respiratory resistive impedance as an index of airway obstruction during nasal continuous positive airway pressure titration.
    Lorino AM; Lofaso F; Duizabo D; Zerah F; Goldenberg F; d'Ortho MP; Harf A; Lorino H
    Am J Respir Crit Care Med; 1998 Nov; 158(5 Pt 1):1465-70. PubMed ID: 9817694
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Four and six parameter models of forced random noise respiratory impedance in normals.
    Lorino H; Mariette C; Lorino AM; Harf A
    Eur Respir J; 1989 Oct; 2(9):874-82. PubMed ID: 2806515
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Validity of a random noise oscillation and body box system for the measurement of the respiratory impedance of small animals.
    Mishima M; Kawakami K; Fukunaga T; Sugiura N; Hirai T; Oku Y; Fukui M; Chin K; Ohi M; Kuno K
    Front Med Biol Eng; 1996; 7(3):163-75. PubMed ID: 8882903
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal of the tracheal tube after prolonged mechanical ventilation: assessment of risk by oscillatory impedance.
    Franke KJ; Nilius G; Morgenstern S; Ruhle KH
    Respiration; 2011; 81(2):118-23. PubMed ID: 20424425
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Frequency dependence of forced oscillatory respiratory mechanics in horses with heaves.
    Young SS; Tesarowski D; Viel L
    J Appl Physiol (1985); 1997 Mar; 82(3):983-7. PubMed ID: 9074991
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes of respiratory input impedance during breathing in humans.
    Cauberghs M; Van de Woestijne KP
    J Appl Physiol (1985); 1992 Dec; 73(6):2355-62. PubMed ID: 1490943
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal artifacts in plethysmographic airway resistance measurements.
    Peslin R; Duvivier C; Vassiliou M; Gallina C
    J Appl Physiol (1985); 1995 Dec; 79(6):1958-65. PubMed ID: 8847260
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Errors in the measurement of total respiratory resistance and reactance by forced oscillations.
    Lándsér FJ; Nagels J; Clément J; Van de Woestijne KP
    Respir Physiol; 1976 Dec; 28(3):289-301. PubMed ID: 1019428
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analytical Solutions for Simple Turbulent Shear Flows on a Basis of a Generalized Newton's Law.
    Nikushchenko D; Pavlovsky V; Nikushchenko E
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [The influence of endotracheal tube size on the airway flow resistance and work in infants analyzed using a simulation technique].
    Shimizu Y; Ishida N; Hagiwara K; Azuma M; Nakano M
    Masui; 1989 Aug; 38(8):1030-5. PubMed ID: 2810696
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Steady and unsteady pressure-flow relationships in central airways.
    Isabey D; Chang HK
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Nov; 51(5):1338-48. PubMed ID: 7298472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human respiratory input impedance between 32 and 800 Hz, measured by interrupter technique and forced oscillations.
    Frey U; Suki B; Kraemer R; Jackson AC
    J Appl Physiol (1985); 1997 Mar; 82(3):1018-23. PubMed ID: 9074996
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endotracheal tube as a factor in measurement of respiratory mechanics.
    Sullivan M; Paliotta J; Saklad M
    J Appl Physiol; 1976 Oct; 41(4):590-2. PubMed ID: 985406
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of an Intermittency Model for Laminar, Transitional, and Turbulent Internal Flows.
    Abraham JP; Sparrow EM; Gorman JM; Zhao Y; Minkowycz WJ
    J Fluids Eng; 2019 Jul; 141(7):0712041-712048. PubMed ID: 33437104
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The attenuation of sound by turbulence in internal flows.
    Weng C; Boij S; Hanifi A
    J Acoust Soc Am; 2013 Jun; 133(6):3764-76. PubMed ID: 23742331
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Endotracheal tube resistance and inertance in a model of mechanical ventilation of newborns and small infants-the impact of ventilator settings on tracheal pressure swings.
    Hentschel R; Buntzel J; Guttmann J; Schumann S
    Physiol Meas; 2011 Sep; 32(9):1439-51. PubMed ID: 21799238
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Infant endotracheal tube resistance: effects of changing length, diameter, and gas density.
    Wall MA
    Crit Care Med; 1980 Jan; 8(1):38-40. PubMed ID: 7349947
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tracheostomy Tube Type and Inner Cannula Selection Impact Pressure and Resistance to Air Flow.
    Pryor LN; Baldwin CE; Ward EC; Cornwell PL; O'Connor SN; Chapman MJ; Bersten AD
    Respir Care; 2016 May; 61(5):607-14. PubMed ID: 26860399
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The steady expiratory pressure-flow relation in a model pulmonary bifurcation.
    Collins JM; Shapiro AH; Kimmel E; Kamm RD
    J Biomech Eng; 1993 Aug; 115(3):299-305. PubMed ID: 8231146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.