BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 8444804)

  • 1. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis nadB gene and a nifS-like gene, both of which are essential for NAD biosynthesis.
    Sun D; Setlow P
    J Bacteriol; 1993 Mar; 175(5):1423-32. PubMed ID: 8444804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic linkage in Pseudomonas aeruginosa of algT and nadB: mutation in nadB does not affect NAD biosynthesis or alginate production.
    DeVries CA; Hassett DJ; Flynn JL; Ohman DE
    Gene; 1995 Apr; 156(1):63-7. PubMed ID: 7737518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular biology of pyridine nucleotide biosynthesis in Escherichia coli. Cloning and characterization of quinolinate synthesis genes nadA and nadB.
    Flachmann R; Kunz N; Seifert J; Gütlich M; Wientjes FJ; Läufer A; Gassen HG
    Eur J Biochem; 1988 Aug; 175(2):221-8. PubMed ID: 2841129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and nucleotide sequence of the Bacillus subtilis ansR gene, which encodes a repressor of the ans operon coding for L-asparaginase and L-aspartase.
    Sun D; Setlow P
    J Bacteriol; 1993 May; 175(9):2501-6. PubMed ID: 8478318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpE operon, which codes for penicillin-binding protein 4* and an apparent amino acid racemase.
    Popham DL; Setlow P
    J Bacteriol; 1993 May; 175(10):2917-25. PubMed ID: 8491712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome.
    Petricek M; Rutberg L; Schröder I; Hederstedt L
    J Bacteriol; 1990 May; 172(5):2250-8. PubMed ID: 2110138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. YrxA is the transcriptional regulator that represses de novo NAD biosynthesis in Bacillus subtilis.
    Rossolillo P; Marinoni I; Galli E; Colosimo A; Albertini AM
    J Bacteriol; 2005 Oct; 187(20):7155-60. PubMed ID: 16199587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon.
    Quinn CL; Stephenson BT; Switzer RL
    J Biol Chem; 1991 May; 266(14):9113-27. PubMed ID: 1709162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, characterization, and expression of the spoVB gene of Bacillus subtilis.
    Popham DL; Stragier P
    J Bacteriol; 1991 Dec; 173(24):7942-9. PubMed ID: 1744050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis.
    Gardan R; Rapoport G; Débarbouillé M
    J Mol Biol; 1995 Jun; 249(5):843-56. PubMed ID: 7540694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, nucleotide sequence, and expression of the Bacillus subtilis lon gene.
    Riethdorf S; Völker U; Gerth U; Winkler A; Engelmann S; Hecker M
    J Bacteriol; 1994 Nov; 176(21):6518-27. PubMed ID: 7961402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene.
    Sá-Nogueira I; Mota LJ
    J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization.
    Sá-Nogueira I; Ramos SS
    J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfpo and Escherichia coli entD genes.
    Grossman TH; Tuckman M; Ellestad S; Osburne MS
    J Bacteriol; 1993 Oct; 175(19):6203-11. PubMed ID: 8407792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nitrogen-regulated Bacillus subtilis nrgAB operon encodes a membrane protein and a protein highly similar to the Escherichia coli glnB-encoded PII protein.
    Wray LV; Atkinson MR; Fisher SH
    J Bacteriol; 1994 Jan; 176(1):108-14. PubMed ID: 8282685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals.
    Wise AA; Price CW
    J Bacteriol; 1995 Jan; 177(1):123-33. PubMed ID: 8002610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic method to identify regulons controlled by nonessential elements: isolation of a gene dependent on alternate transcription factor sigma B of Bacillus subtilis.
    Boylan SA; Thomas MD; Price CW
    J Bacteriol; 1991 Dec; 173(24):7856-66. PubMed ID: 1744042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis.
    Kuroda A; Asami Y; Sekiguchi J
    J Bacteriol; 1993 Oct; 175(19):6260-8. PubMed ID: 8407798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators.
    Calogero S; Gardan R; Glaser P; Schweizer J; Rapoport G; Debarbouille M
    J Bacteriol; 1994 Mar; 176(5):1234-41. PubMed ID: 8113162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, nucleotide sequence, mutagenesis, and mapping of the Bacillus subtilis pbpD gene, which codes for penicillin-binding protein 4.
    Popham DL; Setlow P
    J Bacteriol; 1994 Dec; 176(23):7197-205. PubMed ID: 7961491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.