These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 8444839)
41. An alpha-proteobacterial type malate dehydrogenase may complement LDH function in Plasmodium falciparum. Cloning and biochemical characterization of the enzyme. Tripathi AK; Desai PV; Pradhan A; Khan SI; Avery MA; Walker LA; Tekwani BL Eur J Biochem; 2004 Sep; 271(17):3488-502. PubMed ID: 15317584 [TBL] [Abstract][Full Text] [Related]
42. Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site. Danielson UH; Jiang F; Hansson LO; Mannervik B Biochemistry; 1999 Jul; 38(29):9254-63. PubMed ID: 10413499 [TBL] [Abstract][Full Text] [Related]
43. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. Watanabe S; Kodaki T; Makino K J Biol Chem; 2005 Mar; 280(11):10340-9. PubMed ID: 15623532 [TBL] [Abstract][Full Text] [Related]
44. Coenzyme specificity of human monomeric carbonyl reductase: contribution of Lys-15, Ala-37 and Arg-38. Sciotti M; Wermuth B Chem Biol Interact; 2001 Jan; 130-132(1-3):871-8. PubMed ID: 11306102 [TBL] [Abstract][Full Text] [Related]
45. Purification and kinetic characterization of Haemophilus parasuis malate dehydrogenase. Wise DJ; Anderson CD; Anderson BM Arch Biochem Biophys; 1997 Aug; 344(1):176-83. PubMed ID: 9244395 [TBL] [Abstract][Full Text] [Related]
46. The catalytic site of chloroplastic NADP-dependent malate dehydrogenase contains a His/Asp pair. Lemaire M; Miginiac-Maslow M; Decottignies P Eur J Biochem; 1996 Mar; 236(3):947-52. PubMed ID: 8665917 [TBL] [Abstract][Full Text] [Related]
47. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875 [TBL] [Abstract][Full Text] [Related]
48. An investigation of the thermal stabilities of two malate dehydrogenases by comparison of their three-dimensional structures. Duffield ML; Nicholls DJ; Atkinson T; Scawen MD J Mol Graph; 1994 Mar; 12(1):14-21, 34. PubMed ID: 8011596 [TBL] [Abstract][Full Text] [Related]
49. Direct NMR observation of the thioredoxin-mediated reduction of the chloroplast NADP-malate dehydrogenase provides a structural basis for the relief of autoinhibition. Krimm I; Goyer A; Issakidis-Bourguet E; Miginiac-Maslow M; Lancelin JM J Biol Chem; 1999 Dec; 274(49):34539-42. PubMed ID: 10574915 [TBL] [Abstract][Full Text] [Related]
50. Roles of Arg231 and Tyr284 of Thermus thermophilus isocitrate dehydrogenase in the coenzyme specificity. Yaoi T; Miyazaki K; Oshima T FEBS Lett; 1994 Nov; 355(2):171-2. PubMed ID: 7982494 [TBL] [Abstract][Full Text] [Related]
51. Redesign of the coenzyme specificity in L-lactate dehydrogenase from bacillus stearothermophilus using site-directed mutagenesis and media engineering. Holmberg N; Ryde U; Bülow L Protein Eng; 1999 Oct; 12(10):851-6. PubMed ID: 10556245 [TBL] [Abstract][Full Text] [Related]
52. Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus. Hektor HJ; Kloosterman H; Dijkhuizen L J Biol Chem; 2002 Dec; 277(49):46966-73. PubMed ID: 12351635 [TBL] [Abstract][Full Text] [Related]
53. Primary and tertiary structure of the principal human adenylate kinase. Von Zabern I; Wittmann-Liebold B; Untucht-Grau R; Schirmer RH; Pai EF Eur J Biochem; 1976 Sep; 68(1):281-90. PubMed ID: 183954 [TBL] [Abstract][Full Text] [Related]
54. Involvement of two basic residues (Lys-17 and Arg-39) of mouse lung carbonyl reductase in NADP(H)-binding and fatty acid activation: site-directed mutagenesis and kinetic analyses. Nakanishi M; Kakumoto M; Matsuura K; Deyashiki Y; Tanaka N; Nonaka T; Mitsui Y; Hara A J Biochem; 1996 Aug; 120(2):257-63. PubMed ID: 8889808 [TBL] [Abstract][Full Text] [Related]
55. [Coenzyme specificity and isoenzyme spectrum of rat brain malate dehydrogenase]. Movsesian SG; Burnazian LB Vopr Biokhim Mozga; 1975; 10():84-90. PubMed ID: 186945 [TBL] [Abstract][Full Text] [Related]
56. Enzymatic characterization and functional implication of two structurally different isocitrate dehydrogenases from Xylella fastidiosa. Lv P; Tang W; Wang P; Cao Z; Zhu G Biotechnol Appl Biochem; 2018 Mar; 65(2):230-237. PubMed ID: 28220528 [TBL] [Abstract][Full Text] [Related]
57. Reversal of coenzyme specificity of 2,3-butanediol dehydrogenase from Saccharomyces cerevisae and in vivo functional analysis. Ehsani M; Fernández MR; Biosca JA; Dequin S Biotechnol Bioeng; 2009 Oct; 104(2):381-9. PubMed ID: 19507198 [TBL] [Abstract][Full Text] [Related]
58. Conversion of the coenzyme specificity of isocitrate dehydrogenase by module replacement. Yaoi T; Miyazaki K; Oshima T; Komukai Y; Go M J Biochem; 1996 May; 119(5):1014-8. PubMed ID: 8797105 [TBL] [Abstract][Full Text] [Related]
59. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H). Cui D; Zhang L; Jiang S; Yao Z; Gao B; Lin J; Yuan YA; Wei D FEBS J; 2015 Jun; 282(12):2339-51. PubMed ID: 25817922 [TBL] [Abstract][Full Text] [Related]
60. NADP-malate dehydrogenase from Chlamydomonas: prediction of new structural determinants for redox regulation by homology modelling. Gómez Ia; Merchán F; Fernández E; Quesada A Plant Mol Biol; 2002 Feb; 48(3):211-21. PubMed ID: 11855723 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]