These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Toward virtual biopsy through an all fiber optic ultrasonic miniaturized transducer: a proposal. Acquafresca A; Biagi E; Masotti L; Menichelli D IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1325-35. PubMed ID: 14609072 [TBL] [Abstract][Full Text] [Related]
3. Design and characterization of a high-power ultrasound driver with ultralow-output impedance. Lewis GK; Olbricht WL Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748 [TBL] [Abstract][Full Text] [Related]
4. An adjustable multi-scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer. Chen X; Lam KH; Chen R; Chen Z; Yu P; Chen Z; Shung KK; Zhou Q Biotechnol Bioeng; 2017 Nov; 114(11):2637-2647. PubMed ID: 28654158 [TBL] [Abstract][Full Text] [Related]
5. Excitation of Mechanical Resonances in the Stationary Ring of a Mechanical Seal by a Continuously Operated Electromagnetic Acoustic Transducer. Siegl A; Leithner S; Schweighofer B; Wegleiter H Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679812 [TBL] [Abstract][Full Text] [Related]
6. Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography. Kim J; Li S; Kasoji S; Dayton PA; Jiang X Ultrasonics; 2015 Dec; 63():7-15. PubMed ID: 26112426 [TBL] [Abstract][Full Text] [Related]
7. Basic considerations of acoustic lenses for ultrasonic transducers. Ichinose RM; Machado JC Med Prog Technol; 1994; 20(1-2):53-8. PubMed ID: 7968866 [TBL] [Abstract][Full Text] [Related]
8. Acoustic field prediction for a single planar continuous-wave source using an equivalent phased array method. Fan X; Moros EG; Straube WL J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2734-41. PubMed ID: 9373969 [TBL] [Abstract][Full Text] [Related]
10. An Air-Coupled Multiple Moving Membrane Micromachined Ultrasonic Transducer With Inverse Biasing Functionality. Emadi A; Buchanan DA IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1140-7. PubMed ID: 27254861 [TBL] [Abstract][Full Text] [Related]
11. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers. Li Z; Yang DQ; Liu SL; Yu SY; Lu MH; Zhu J; Zhang ST; Zhu MW; Guo XS; Wu HD; Wang XL; Chen YF Sci Rep; 2017 Feb; 7():42863. PubMed ID: 28211510 [TBL] [Abstract][Full Text] [Related]
12. A new laser-ultrasound transducer for medical applications. Chen QX; Dewhurst RJ; Payne PA; Wood B Ultrasonics; 1994 Jul; 32(4):309-13. PubMed ID: 8023421 [TBL] [Abstract][Full Text] [Related]
13. New symmetric reflector ultrasonic transducers (SRUT). Toda M IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2311-9. PubMed ID: 19942517 [TBL] [Abstract][Full Text] [Related]
14. Measurement of low-frequency ultrasonic wave in water using an acoustic fiber sensor. Sakoda T; Sonoda Y IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):761-7. PubMed ID: 16615580 [TBL] [Abstract][Full Text] [Related]
15. Impedance matching network for high frequency ultrasonic transducer for cellular applications. Kim MG; Yoon S; Kim HH; Shung KK Ultrasonics; 2016 Feb; 65():258-67. PubMed ID: 26442434 [TBL] [Abstract][Full Text] [Related]
16. Design, fabrication and testing of a dual-band photoacoustic transducer. Liu JH; Wei CW; Sheu YL; Tasi YT; Wang YH; Li PC Ultrason Imaging; 2008 Oct; 30(4):217-27. PubMed ID: 19507675 [TBL] [Abstract][Full Text] [Related]
17. Optical imaging of shock waves produced by a high-energy electromagnetic transducer. Carnell MT; Alcock RD; Emmony DC Phys Med Biol; 1993 Nov; 38(11):1575-88. PubMed ID: 8272433 [TBL] [Abstract][Full Text] [Related]
18. A 35 MHz/105 MHz Dual-Element Focused Transducer for Intravascular Ultrasound Tissue Imaging Using the Third Harmonic. Lee J; Moon JY; Chang JH Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011948 [TBL] [Abstract][Full Text] [Related]