These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 844522)

  • 1. Neuronal changes in the aging mouse: spinal cord and lower brain stem.
    Machado-Salas J; Scheibel ME; Scheibel AB
    Exp Neurol; 1977 Mar; 54(3):504-12. PubMed ID: 844522
    [No Abstract]   [Full Text] [Related]  

  • 2. The isodendritic core of the brain stem.
    Ramón-Moliner E; Nauta WJ
    J Comp Neurol; 1966 Mar; 126(3):311-35. PubMed ID: 4957032
    [No Abstract]   [Full Text] [Related]  

  • 3. Distribution of accessory and hypoglossal nerves in the hindbrain and spinal cord of lungless salamanders, family Plethodontidae.
    Roth G; Wake DB; Wake MH; Rettig G
    Neurosci Lett; 1984 Jan; 44(1):53-7. PubMed ID: 6717853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging synaptically mediated responses produced by brainstem inputs onto identified spinal neurons in the neonatal mouse.
    Szokol K; Perreault MC
    J Neurosci Methods; 2009 May; 180(1):1-8. PubMed ID: 19427523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reticulospinal fibers of the opossum, Didelphis virginiana. I. Origin.
    Beran RL; Martin GF
    J Comp Neurol; 1971 Apr; 141(4):453-65. PubMed ID: 4101679
    [No Abstract]   [Full Text] [Related]  

  • 6. Cell grouping and Golgi architecture of the hypoglossal nucleus of the rat.
    Odutola AB
    Exp Neurol; 1976 Sep; 52(3):356-71. PubMed ID: 954914
    [No Abstract]   [Full Text] [Related]  

  • 7. Silver impregnation of degenerating dendrites, cells and axons central to axonal transection. I. A Nauta study on the hypoglossal nerve in kittens.
    Grant G; Aldskogius H
    Exp Brain Res; 1967; 3(2):150-62. PubMed ID: 4166259
    [No Abstract]   [Full Text] [Related]  

  • 8. Contribution to the quantitative study of the nervous tissue. A new method for measurement of the volume and surface area of neurons.
    Mannen H
    J Comp Neurol; 1966 Jan; 126(1):75-89. PubMed ID: 5935371
    [No Abstract]   [Full Text] [Related]  

  • 9. Volumetric sampling strategies for heterogeneous brainstem nuclei.
    Kinney HC; Meagher CC; Simons JE; Matthysse SW
    J Neuropathol Exp Neurol; 1989 May; 48(3):223-44. PubMed ID: 2703855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of premotor interneurons which project bilaterally to the trigeminal motor, facial or hypoglossal nuclei: a fluorescent retrograde double-labeling study in the rat.
    Li YQ; Takada M; Mizuno N
    Brain Res; 1993 May; 611(1):160-4. PubMed ID: 8518944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Descending projections of Forel's field H neurones to the brain stem and the upper cervical spinal cord in the cat.
    Isa T; Sasaki S
    Exp Brain Res; 1992; 88(3):563-79. PubMed ID: 1375165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes within maturing neurons limit axonal regeneration in the developing spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Mar; 66(4):348-60. PubMed ID: 16408302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei.
    Newman DB
    J Hirnforsch; 1985; 26(2):187-226. PubMed ID: 2410489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compared effects of serotonin on the inspiratory activity of glossopharyngeal, vagal, hypoglossal and cervical motoneurons in neonatal rat brain stem-spinal cord preparations.
    Morin D
    Neurosci Lett; 1993 Sep; 160(1):61-4. PubMed ID: 8247335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of last-order premotor interneurons related to the protraction of tongue in the frog, Rana esculenta.
    Rácz E; Bácskai T; Szabo G; Székely G; Matesz C
    Brain Res; 2008 Jan; 1187():111-5. PubMed ID: 18036575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of golgi thiaminepyrophosphatase and lysosomal acid phosphatase to neuromelanin and lipofuscin in cerebral neurons of the aging rhesus monkey.
    Barden H
    J Neuropathol Exp Neurol; 1970 Apr; 29(2):225-40. PubMed ID: 4985178
    [No Abstract]   [Full Text] [Related]  

  • 17. Cell and neuropil architecture of the intermedio-lateral (sympathetic) nucleus of cat spinal cord.
    Réthelyi M
    Brain Res; 1972 Nov; 46():203-13. PubMed ID: 4117874
    [No Abstract]   [Full Text] [Related]  

  • 18. Reticulospinal fibers of the opossum, Didelphis virginiana. II. Course, caudal extent and distribution.
    Martin GF; Dom R
    J Comp Neurol; 1971 Apr; 141(4):467-83. PubMed ID: 4101680
    [No Abstract]   [Full Text] [Related]  

  • 19. Ultrastructural characteristics of the caudal and rostral brain stem reticular formation.
    Bowsher D; Westman J
    Brain Res; 1971 May; 28(3):443-57. PubMed ID: 5111722
    [No Abstract]   [Full Text] [Related]  

  • 20. A study of the origin of brain stem projections to monkey spinal cord using the retrograde transport method.
    Kneisley LW; Biber MP; LaVail JH
    Exp Neurol; 1978 May; 60(1):116-39. PubMed ID: 77794
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.