These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8445395)

  • 1. Oscillatory potentials of visual evoked potentials using source derivation technique in rabbits.
    Nakatake N; Hori A; Yasuhara A; Naito H; Yasuhara M
    J Neurol Sci; 1993 Feb; 114(2):144-51. PubMed ID: 8445395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Source derivation: application to topographic mapping of visual evoked potentials.
    Thickbroom GW; Mastaglia FL; Carroll WM; Davies HD
    Electroencephalogr Clin Neurophysiol; 1984 Jul; 59(4):279-85. PubMed ID: 6203717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal generators of the visual evoked potentials: intracerebral recording in awake humans.
    Ducati A; Fava E; Motti ED
    Electroencephalogr Clin Neurophysiol; 1988; 71(2):89-99. PubMed ID: 2449338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographic mapping of the visual evoked potential after source derivation.
    Carreño-Rimaudo SV; Catelli-Infantosi AF
    Med Prog Technol; 1994; 20(1-2):5-13. PubMed ID: 7968865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic origin and stimulus dependency of neuronal oscillatory activity in the primary visual cortex of the cat.
    Bringuier V; Frégnac Y; Baranyi A; Debanne D; Shulz DE
    J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):751-74. PubMed ID: 9161989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual evoked potentials.
    Nehamkin S; Windom M; Syed TU
    Am J Electroneurodiagnostic Technol; 2008 Dec; 48(4):233-48. PubMed ID: 19203077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillatory discharge in the visual system: does it have a functional role?
    Ghose GM; Freeman RD
    J Neurophysiol; 1992 Nov; 68(5):1558-74. PubMed ID: 1479430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-frequency analysis of visual evoked potentials for interhemispheric transfer time and proportion in callosal fibers of different diameters.
    Ulusoy I; Halici U; Nalçaci E; Anaç I; Leblebicio Eroğlu K; Başar-Eroğlu C
    Biol Cybern; 2004 Apr; 90(4):291-301. PubMed ID: 15085348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of inter-hemispheric transfer in generating visual evoked potentials in V1-damaged brain hemispheres.
    Kavcic V; Triplett RL; Das A; Martin T; Huxlin KR
    Neuropsychologia; 2015 Feb; 68():82-93. PubMed ID: 25575450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain mapping of bilateral visual interactions in children.
    Steger J; Imhof K; Denoth J; Pascual-Marqui RD; Steinhausen HC; Brandeis D
    Psychophysiology; 2001 Mar; 38(2):243-53. PubMed ID: 11347870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-computer interfaces based on visual evoked potentials.
    Wang Y; Gao X; Hong B; Jia C; Gao S
    IEEE Eng Med Biol Mag; 2008; 27(5):64-71. PubMed ID: 18799392
    [No Abstract]   [Full Text] [Related]  

  • 12. [Maps of visually evoked brain electrical activity in rabbits].
    Pérez-Cobo JC; Sánchez-Suero S; López de Armentia M; Pérez-Arroyo M
    Rev Esp Fisiol; 1993 Sep; 49(3):181-6. PubMed ID: 8310169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual event-related potentials in elite and amateur athletes.
    Del Percio C; Brancucci A; Vecchio F; Marzano N; Pirritano M; Meccariello E; Padoa S; Mascia A; Giallonardo AT; Aschieri P; Lino A; Palma E; Fiore A; Di Ciolo E; Babiloni C; Eusebi F
    Brain Res Bull; 2007 Sep; 74(1-3):104-12. PubMed ID: 17683795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast visual evoked potential input into human area V5.
    Buchner H; Gobbelé R; Wagner M; Fuchs M; Waberski TD; Beckmann R
    Neuroreport; 1997 Jul; 8(11):2419-22. PubMed ID: 9261801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Oscillatory potentials in the structures of the visual system].
    Abdullaev GB; Gadzhieva NA; Rzaeva NM; Alekperova SA; Kambarli EI
    Fiziol Zh SSSR Im I M Sechenova; 1977 Dec; 63(12):1653-61. PubMed ID: 598537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal waveform of the human pattern VEP: contribution from gamma oscillatory components.
    Sannita WG; Carozzo S; Fioretto M; Garbarino S; Martinoli C
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4534-41. PubMed ID: 17898275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcranial Direct Current Stimulation Effects on Single and Paired Flash Visual Evoked Potentials.
    Strigaro G; Mayer I; Chen JC; Cantello R; Rothwell JC
    Clin EEG Neurosci; 2015 Jul; 46(3):208-13. PubMed ID: 25253432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neural origins of human event-related potentials.
    Vaughan HG
    Ann N Y Acad Sci; 1982; 388():125-38. PubMed ID: 6807171
    [No Abstract]   [Full Text] [Related]  

  • 19. Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis.
    Vanni S; Warnking J; Dojat M; Delon-Martin C; Bullier J; Segebarth C
    Neuroimage; 2004 Mar; 21(3):801-17. PubMed ID: 15006647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral geniculate cells responses following blockade of the visual cortex in rats: a comparison with rabbits.
    Molotchnikoff S; Tremblay F; Baron G
    J Neurosci Res; 1982; 7(4):461-9. PubMed ID: 7143493
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.