These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 8445767)
1. Age-dependent changes in plasma and brain cholinesterase activities of eastern bluebirds and European starlings. Gard NW; Hooper MJ J Wildl Dis; 1993 Jan; 29(1):1-7. PubMed ID: 8445767 [TBL] [Abstract][Full Text] [Related]
2. Age-dependent changes in plasma and brain cholinesterase activities of house wrens and European starlings. Mayack DT; Martin T J Wildl Dis; 2003 Jul; 39(3):627-37. PubMed ID: 14567225 [TBL] [Abstract][Full Text] [Related]
3. Brain cholinesterase activity of nestling great egrets, snowy egrets and black-crowned night-herons. Custer TW; Ohlendorf HM J Wildl Dis; 1989 Jul; 25(3):359-63. PubMed ID: 2761008 [TBL] [Abstract][Full Text] [Related]
4. Plasma B-esterase activities in European raptors. Roy C; Grolleau G; Chamoulaud S; Rivière JL J Wildl Dis; 2005 Jan; 41(1):184-208. PubMed ID: 15827224 [TBL] [Abstract][Full Text] [Related]
5. Age-dependent changes in activity of mallard plasma cholinesterases. Bennett RS; Bennett JK J Wildl Dis; 1991 Jan; 27(1):116-8. PubMed ID: 2023309 [TBL] [Abstract][Full Text] [Related]
6. Neurological cholinesterases in the normal brain and in Alzheimer's disease: relationship to plaques, tangles, and patterns of selective vulnerability. Wright CI; Geula C; Mesulam MM Ann Neurol; 1993 Sep; 34(3):373-84. PubMed ID: 8363355 [TBL] [Abstract][Full Text] [Related]
7. Oral administration of pyridostigmine bromide and huperzine A protects human whole blood cholinesterases from ex vivo exposure to soman. Gordon RK; Haigh JR; Garcia GE; Feaster SR; Riel MA; Lenz DE; Aisen PS; Doctor BP Chem Biol Interact; 2005 Dec; 157-158():239-46. PubMed ID: 16256090 [TBL] [Abstract][Full Text] [Related]
8. Comparison of methods used for the determination of cholinesterase activity in whole blood. Naik RS; Doctor BP; Saxena A Chem Biol Interact; 2008 Sep; 175(1-3):298-302. PubMed ID: 18555980 [TBL] [Abstract][Full Text] [Related]
9. Lizard cholinesterases as biomarkers of pesticide exposure: enzymological characterization. Sanchez-Hernandez JC; Sanchez BM Environ Toxicol Chem; 2002 Nov; 21(11):2319-25. PubMed ID: 12389909 [TBL] [Abstract][Full Text] [Related]
10. Modifications of a cholinesterase method for determination of erythrocyte cholinesterase activity in wild mammals. Donovan DA; Zinkl JG J Wildl Dis; 1994 Apr; 30(2):234-40. PubMed ID: 8028108 [TBL] [Abstract][Full Text] [Related]
11. Brain cholinesterase (ChE) activity in nestling starlings: implications for monitoring exposure of nestling songbirds to ChE inhibitors. Grue CE; Powell GV; Gladson NL Bull Environ Contam Toxicol; 1981 Apr; 26(4):544-7. PubMed ID: 7236914 [No Abstract] [Full Text] [Related]
12. Characterization of cholinesterases in the damselfish Sergeant major (Abudefduf saxatilis). Rodríguez-Fuentes G; Soto M; Luna-Ramírez K Ecotoxicol Environ Saf; 2013 Oct; 96():99-102. PubMed ID: 23886799 [TBL] [Abstract][Full Text] [Related]
13. Brain cholinesterase activity of apparently normal wild birds. Hill EF J Wildl Dis; 1988 Jan; 24(1):51-61. PubMed ID: 3352096 [TBL] [Abstract][Full Text] [Related]
14. Advantages of the WRAIR whole blood cholinesterase assay: comparative analysis to the micro-Ellman, Test-mate ChE, and Michel (DeltapH) assays. Haigh JR; Lefkowitz LJ; Capacio BR; Doctor BP; Gordon RK Chem Biol Interact; 2008 Sep; 175(1-3):417-20. PubMed ID: 18555983 [TBL] [Abstract][Full Text] [Related]
15. Cholinesterase response in native birds exposed to fenitrothion during locust control operations in eastern Australia. Fildes K; Astheimer LB; Story P; Buttemer WA; Hooper MJ Environ Toxicol Chem; 2006 Nov; 25(11):2964-70. PubMed ID: 17089720 [TBL] [Abstract][Full Text] [Related]
16. Characterization of plasma cholinesterase from the White stork (Ciconia ciconia) and its in vitro inhibition by anticholinesterase pesticides. Oropesa AL; Gravato C; Sánchez S; Soler F Ecotoxicol Environ Saf; 2013 Nov; 97():131-8. PubMed ID: 23962622 [TBL] [Abstract][Full Text] [Related]
17. Biochemical effects of low level exposure to soman vapour. Bajgar J; Sevelová L; Krejcová G; Fusek J; Vachek J; Kassa J; Herink J; de Jong LP; Benschop H Cent Eur J Public Health; 2004 Mar; 12 Suppl():S4-7. PubMed ID: 15141961 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the ontogenesis of thyroid hormones, growth hormone, and insulin-like growth factor-I in ad libitum and food-restricted (altricial) European starlings and (precocial) Japanese quail. Schew WA; McNabb FM; Scanes CG Gen Comp Endocrinol; 1996 Mar; 101(3):304-16. PubMed ID: 8729940 [TBL] [Abstract][Full Text] [Related]
19. Differential toxicities of organophosphate and carbamate insecticides in the nestling European starling (Sturnus vulgaris). Parker ML; Goldstein MI Arch Environ Contam Toxicol; 2000 Aug; 39(2):233-42. PubMed ID: 10871426 [TBL] [Abstract][Full Text] [Related]
20. Characterization of muscle cholinesterases from two demersal flatfish collected near a municipal wastewater outfall in Southern California. Rodríguez-Fuentes G; Armstrong J; Schlenk D Ecotoxicol Environ Saf; 2008 Mar; 69(3):466-71. PubMed ID: 17659776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]