These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8445888)

  • 1. A numerical simulation of flow in a two-dimensional end-to-side anastomosis model.
    Steinman DA; Vinh B; Ethier CR; Ojha M; Cobbold RS; Johnston KW
    J Biomech Eng; 1993 Feb; 115(1):112-8. PubMed ID: 8445888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis.
    Steinman DA; Ethier CR
    J Biomech Eng; 1994 Aug; 116(3):294-301. PubMed ID: 7799630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow dynamics across end-to-end vascular bypass graft anastomoses.
    Kim YH; Chandran KB; Bower TJ; Corson JD
    Ann Biomed Eng; 1993; 21(4):311-20. PubMed ID: 8214816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulations of pulsatile flow in an end-to-side anastomosis model.
    Shaik E; Hoffmann KA; Dietiker JF
    Mol Cell Biomech; 2007 Mar; 4(1):41-53. PubMed ID: 17879770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow waveform effects on end-to-side anastomotic flow patterns.
    Ethier CR; Steinman DA; Zhang X; Karpik SR; Ojha M
    J Biomech; 1998 Jul; 31(7):609-17. PubMed ID: 9796683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study.
    Fei DY; Thomas JD; Rittgers SE
    J Biomech Eng; 1994 Aug; 116(3):331-6. PubMed ID: 7799636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, Reynolds number, and hood length.
    White SS; Zarins CK; Giddens DP; Bassiouny H; Loth F; Jones SA; Glagov S
    J Biomech Eng; 1993 Feb; 115(1):104-11. PubMed ID: 8445887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model.
    Ojha M
    J Biomech; 1993 Dec; 26(12):1377-88. PubMed ID: 8308043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsatile flow in an end-to-side vascular graft model: comparison of computations with experimental data.
    Lei M; Giddens DP; Jones SA; Loth F; Bassiouny H
    J Biomech Eng; 2001 Feb; 123(1):80-7. PubMed ID: 11277306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ; Morsi YS; Lai T
    Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamics of a side-to-end proximal arterial anastomosis model.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1993 Apr; 17(4):646-55. PubMed ID: 8464081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of angle on wall shear stress distribution for an end-to-side anastomosis.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1994 Jun; 19(6):1067-73. PubMed ID: 8201708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady and pulsatile flow fields in an end-to-side arterial anastomosis model.
    Ojha M; Ethier CR; Johnston KW; Cobbold RS
    J Vasc Surg; 1990 Dec; 12(6):747-53. PubMed ID: 2243410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle hemodynamics analysis of Miller cuff arterial anastomosis.
    Longest PW; Kleinstreuer C; Archie JP
    J Vasc Surg; 2003 Dec; 38(6):1353-62. PubMed ID: 14681641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses.
    Longest PW; Kleinstreuer C; Deanda A
    Ann Biomed Eng; 2005 Dec; 33(12):1752-66. PubMed ID: 16389524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is there a haemodynamic advantage associated with cuffed arterial anastomoses?
    Cole JS; Watterson JK; O'Reilly MJ
    J Biomech; 2002 Oct; 35(10):1337-46. PubMed ID: 12231279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis.
    Weston MW; Rhee K; Tarbell JM
    J Biomech; 1996 Feb; 29(2):187-98. PubMed ID: 8849812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational investigations of a new prosthetic femoral-popliteal bypass graft design.
    O'Brien TP; Grace P; Walsh M; Burke P; McGloughlin T
    J Vasc Surg; 2005 Dec; 42(6):1169-75. PubMed ID: 16376210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.