These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8445900)

  • 1. Comparison of the adjoint and influence coefficient methods for solving the inverse hyperthermia problem.
    Liauh CT; Hills RG; Roemer RB
    J Biomech Eng; 1993 Feb; 115(1):63-71. PubMed ID: 8445900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A semilinear state and parameter estimation algorithm for inverse hyperthermia problems.
    Liauh CT; Roemer RB
    J Biomech Eng; 1993 Aug; 115(3):257-61. PubMed ID: 8231140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of an inverse heat transfer algorithm for optimizing hyperthermia treatments.
    Gayzik FS; Scott EP; Loulou T
    J Biomech Eng; 2006 Aug; 128(4):505-15. PubMed ID: 16813442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation.
    Huang HW; Shih TC; Liauh CT
    Biomed Eng Online; 2010 Mar; 9():18. PubMed ID: 20346157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers.
    Bazán I; Vazquez M; Ramos A; Vera A; Leija L
    Ultrasonics; 2009 Mar; 49(3):358-76. PubMed ID: 19100591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature simulations in hyperthermia treatment planning of the head and neck region: rigorous optimization of tissue properties.
    Verhaart RF; Rijnen Z; Fortunati V; Verduijn GM; van Walsum T; Veenland JF; Paulides MM
    Strahlenther Onkol; 2014 Nov; 190(12):1117-24. PubMed ID: 25015425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards patient specific thermal modelling of the prostate.
    Van den Berg CA; Van de Kamer JB; De Leeuw AA; Jeukens CR; Raaymakers BW; van Vulpen M; Lagendijk JJ
    Phys Med Biol; 2006 Feb; 51(4):809-25. PubMed ID: 16467580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of selective hyperthermia.
    Bailey CA; Cowan TM; Liu VG; Lemley EC; Chen WR
    J Biomed Opt; 2004; 9(3):648-54. PubMed ID: 15189104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Cartesian coordinate finite difference simulations of small cylindrical objects.
    Chen ZP; Roemer RB
    J Biomech Eng; 1993 Feb; 115(1):119-21. PubMed ID: 8445889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the optimal heating pattern obtained with external planar applicators used for 915 MHz microwave hyperthermia.
    Cresson PY; Dubois L; Pribetich J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1160-3. PubMed ID: 18002168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets.
    Nadobny J; Wlodarczyk W; Westhoff L; Gellermann J; Felix R; Wust P
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):505-19. PubMed ID: 15759581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective learning strategies for real-time image-guided adaptive control of multiple-source hyperthermia applicators.
    Cheng KS; Dewhirst MW; Stauffer PR; Das S
    Med Phys; 2010 Mar; 37(3):1285-97. PubMed ID: 20384266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artefacts in intracavitary temperature measurements during regional hyperthermia.
    Kok HP; Van den Berg CA; Van Haaren PM; Crezee J
    Phys Med Biol; 2007 Sep; 52(17):5157-71. PubMed ID: 17762078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive thermometry in a reentrant resonant cavity applicator.
    Ishihara Y; Endo Y; Ohwada H; Wadamori N
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1487-90. PubMed ID: 18002248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice Boltzmann method for solving the bioheat equation.
    Zhang H
    Phys Med Biol; 2008 Feb; 53(3):N15-23. PubMed ID: 18199898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple minima in inverse hyperthermia temperature estimation problems.
    Liauh CT; Roemer RB
    J Biomech Eng; 1993 Aug; 115(3):239-46. PubMed ID: 8231137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: Phantom and numerical studies.
    Ma M; Zhang Y; Gu N
    J Therm Biol; 2018 Aug; 76():89-94. PubMed ID: 30143303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal therapy, Part IV: electromagnetic and thermal dosimetry.
    Habash RW; Bansal R; Krewski D; Alhafid HT
    Crit Rev Biomed Eng; 2007; 35(1-2):123-82. PubMed ID: 17956223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue.
    Shrivastava D; Roemer RB
    Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse techniques in hyperthermia: a sensitivity study.
    Clegg ST; Samulski TV; Murphy KA; Rosner GL; Dewhirst MW
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):373-82. PubMed ID: 8063303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.