BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 8446029)

  • 1. The general amino acid control regulates MET4, which encodes a methionine-pathway-specific transcriptional activator of Saccharomyces cerevisiae.
    Mountain HA; Byström AS; Korch C
    Mol Microbiol; 1993 Jan; 7(2):215-28. PubMed ID: 8446029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The general amino acid control regulates MET4, which encodes a methionine-pathway-specific transcriptional activator of Saccharomyces cerevisiae.
    Mountain HA; Byström AS; Korch C
    Mol Microbiol; 1993 Jul; 9(1):221-3. PubMed ID: 8412668
    [No Abstract]   [Full Text] [Related]  

  • 3. MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae.
    Thomas D; Jacquemin I; Surdin-Kerjan Y
    Mol Cell Biol; 1992 Apr; 12(4):1719-27. PubMed ID: 1549123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Aspergillus niger GCN4 homologue, cpcA, is transcriptionally regulated and encodes an unusual leucine zipper.
    Wanke C; Eckert S; Albrecht G; van Hartingsveldt W; Punt PJ; van den Hondel CA; Braus GH
    Mol Microbiol; 1997 Jan; 23(1):23-33. PubMed ID: 9004217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of a bZIP-bHLH transcription activation complex: formation of the yeast Cbf1-Met4-Met28 complex is regulated through Met28 stimulation of Cbf1 DNA binding.
    Kuras L; Barbey R; Thomas D
    EMBO J; 1997 May; 16(9):2441-51. PubMed ID: 9171357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single point mutations in Met4p impair the transcriptional repression of MET genes in Saccharomyces cerevisiae.
    Omura F; Fujita A; Shibano Y
    FEBS Lett; 1996 Jun; 387(2-3):179-83. PubMed ID: 8674545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A heteromeric complex containing the centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, mediates the transcription activation of yeast sulfur metabolism.
    Kuras L; Cherest H; Surdin-Kerjan Y; Thomas D
    EMBO J; 1996 May; 15(10):2519-29. PubMed ID: 8665859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of Met4, a yeast transcriptional activator responsive to S-adenosylmethionine.
    Kuras L; Thomas D
    Mol Cell Biol; 1995 Jan; 15(1):208-16. PubMed ID: 7799928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the Saccharomyces cerevisiae general regulatory factor CP1 in methionine biosynthetic gene transcription.
    O'Connell KF; Surdin-Kerjan Y; Baker RE
    Mol Cell Biol; 1995 Apr; 15(4):1879-88. PubMed ID: 7891681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The activation specificities of wild-type and mutant Gcn4p in vivo can be different from the DNA binding specificities of the corresponding bZip peptides in vitro.
    Suckow M; Hollenberg CP
    J Mol Biol; 1998 Mar; 276(5):887-902. PubMed ID: 9566194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif.
    Onodera Y; Suzuki A; Wu CY; Washida H; Takaiwa F
    J Biol Chem; 2001 Apr; 276(17):14139-52. PubMed ID: 11133985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple transcriptional activation complexes tether the yeast activator Met4 to DNA.
    Blaiseau PL; Thomas D
    EMBO J; 1998 Nov; 17(21):6327-36. PubMed ID: 9799240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total deletion of yeast LEU4: further evidence for a second alpha-isopropylmalate synthase and evidence for tight LEU4-MET4 linkage.
    Chang LF; Gatzek PR; Kohlhaw GB
    Gene; 1985; 33(3):333-9. PubMed ID: 3891512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the conserved leucines in the leucine zipper dimerization motif of yeast GCN4.
    van Heeckeren WJ; Sellers JW; Struhl K
    Nucleic Acids Res; 1992 Jul; 20(14):3721-4. PubMed ID: 1641337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional plasticity through differential assembly of a multiprotein activation complex.
    Cormier L; Barbey R; Kuras L
    Nucleic Acids Res; 2010 Aug; 38(15):4998-5014. PubMed ID: 20392822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment.
    Kuras L; Rouillon A; Lee T; Barbey R; Tyers M; Thomas D
    Mol Cell; 2002 Jul; 10(1):69-80. PubMed ID: 12150908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors.
    Wheeler GL; Trotter EW; Dawes IW; Grant CM
    J Biol Chem; 2003 Dec; 278(50):49920-8. PubMed ID: 14514673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The leucine zipper symmetrically positions the adjacent basic regions for specific DNA binding.
    Pu WT; Struhl K
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):6901-5. PubMed ID: 1871104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae.
    Eck R; Stoyan T; Künkel W
    Yeast; 2001 Aug; 18(11):1047-52. PubMed ID: 11481675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The TYE7 gene of Saccharomyces cerevisiae encodes a putative bHLH-LZ transcription factor required for Ty1-mediated gene expression.
    Löhning C; Ciriacy M
    Yeast; 1994 Oct; 10(10):1329-39. PubMed ID: 7900422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.