These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Urinary excretion of 19-noraldosterone in the spontaneously hypertensive rat and stroke-prone spontaneously hypertensive rat. Takeda Y; Miyamori I; Yoneda T; Hurukawa K; Inaba S; Ito Y; Takeda R Clin Exp Pharmacol Physiol Suppl; 1995 Dec; 22(1):S20-2. PubMed ID: 9072356 [TBL] [Abstract][Full Text] [Related]
5. Dietary salt excess unmasks blunted aldosterone suppression and sodium retention in the stroke-prone phenotype of the spontaneously hypertensive rat. Volpe M; Rubattu S; Ganten D; Enea I; Russo R; Lembo G; Mirante A; Condorelli G; Trimarco B J Hypertens; 1993 Aug; 11(8):793-8. PubMed ID: 8228202 [TBL] [Abstract][Full Text] [Related]
6. Introgressed chromosome 2 quantitative trait loci restores aldosterone regulation and reduces response to salt in the stroke-prone spontaneously hypertensive rat. Sampson AK; Mohammed D; Beattie W; Graham D; Kenyon CJ; Al-Dujaili EA; Guryev V; Mcbride MW; Dominiczak AF J Hypertens; 2014 Oct; 32(10):2013-21; discussion 2021. PubMed ID: 25084306 [TBL] [Abstract][Full Text] [Related]
7. Vascular dysfunction and fibrosis in stroke-prone spontaneously hypertensive rats: The aldosterone-mineralocorticoid receptor-Nox1 axis. Harvey AP; Montezano AC; Hood KY; Lopes RA; Rios F; Ceravolo G; Graham D; Touyz RM Life Sci; 2017 Jun; 179():110-119. PubMed ID: 28478264 [TBL] [Abstract][Full Text] [Related]
8. Renal hemodynamics and sodium excretion in stroke-prone spontaneously hypertensive rats. Nagaoka A; Kakihana M; Suno M; Hamajo K Am J Physiol; 1981 Sep; 241(3):F244-9. PubMed ID: 7282927 [TBL] [Abstract][Full Text] [Related]
9. Activation of mineralocorticoid receptors in the rostral ventrolateral medulla is involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats. Nakagaki T; Hirooka Y; Matsukawa R; Nishihara M; Nakano M; Ito K; Hoka S; Sunagawa K Hypertens Res; 2012 Apr; 35(4):470-6. PubMed ID: 22237482 [TBL] [Abstract][Full Text] [Related]
10. Mineralocorticoid receptors/epithelial Na(+) channels in the choroid plexus are involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats. Nakano M; Hirooka Y; Matsukawa R; Ito K; Sunagawa K Hypertens Res; 2013 Mar; 36(3):277-84. PubMed ID: 23096235 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of angiotensin II type-1 receptor antisense oligonucleotides on renal function in spontaneously hypertensive rats. Yoneda M; Sanada H; Yatabe J; Midorikawa S; Hashimoto S; Sasaki M; Katoh T; Watanabe T; Andrews PM; Jose PA; Felder RA Hypertension; 2005 Jul; 46(1):58-65. PubMed ID: 15956107 [TBL] [Abstract][Full Text] [Related]
12. Origin of the Y chromosome influences intrarenal vascular responsiveness to angiotensin I and angiotensin (1-7) in stroke-prone spontaneously hypertensive rats. Sampson AK; Andrews KL; Graham D; McBride MW; Head GA; Thomas MC; Chin-Dusting JP; Dominiczak AF; Jennings GL Hypertension; 2014 Dec; 64(6):1376-83. PubMed ID: 25201895 [TBL] [Abstract][Full Text] [Related]
13. Increased production of angiotensin II in the adrenal gland of stroke-prone spontaneously hypertensive rats with malignant hypertension. Kim S; Hosoi M; Shimamoto K; Takada T; Yamamoto K Biochem Biophys Res Commun; 1991 Jul; 178(1):151-7. PubMed ID: 2069554 [TBL] [Abstract][Full Text] [Related]
14. Decrease in circulating and urine adrenomedullin concentrations in stroke-prone spontaneously hypertensive rats. Hirano S; Ishiyama Y; Matsuo T; Imamura T; Sakata J; Kitamura K; Koiwaya Y; Eto T Hypertens Res; 1998 Mar; 21(1):23-8. PubMed ID: 9582104 [TBL] [Abstract][Full Text] [Related]
15. Influence of dietary phytosterols and phytostanols on diastolic blood pressure and the expression of blood pressure regulatory genes in SHRSP and WKY inbred rats. Chen Q; Gruber H; Swist E; Pakenham C; Ratnayake WM; Scoggan KA Br J Nutr; 2009 Jul; 102(1):93-101. PubMed ID: 19025722 [TBL] [Abstract][Full Text] [Related]
16. The renal kallikrein-kinin system in spontaneously hypertensive rats. Bönner G; Unger T; Rascher W; Speck G; Ganten D; Gross F Agents Actions; 1984 Oct; 15(3-4):111-8. PubMed ID: 6570082 [TBL] [Abstract][Full Text] [Related]
17. Enhanced activation of the mineralocorticoid receptor in genetically hypertensive rats. Mirshahi M; Nicolas C; Agarwal MK Biochem Biophys Res Commun; 1998 Mar; 244(1):120-5. PubMed ID: 9514896 [TBL] [Abstract][Full Text] [Related]
18. Sodium retention and hypertension after kidney transplantation in rats. Graf C; Maser-Gluth C; de Muinck Keizer W; Rettig R Hypertension; 1993 May; 21(5):724-30. PubMed ID: 8491507 [TBL] [Abstract][Full Text] [Related]
19. Adrenal and circulating renin-angiotensin system in stroke-prone hypertensive rats. Kim S; Tokuyama M; Hosoi M; Yamamoto K Hypertension; 1992 Sep; 20(3):280-91. PubMed ID: 1516946 [TBL] [Abstract][Full Text] [Related]
20. Enhanced sympathetic control of renal function in rats congenic for the hypertension-related region on chromosome 1. Wang T; Kobayashi Y; Nabika T; Takabatake T Clin Exp Pharmacol Physiol; 2005 Dec; 32(12):1055-60. PubMed ID: 16445571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]