These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8447458)

  • 21. Mechanoelectrical feedback: role of beta-adrenergic receptor activation in mediating load-dependent shortening of ventricular action potential and refractoriness.
    Lerman BB; Engelstein ED; Burkhoff D
    Circulation; 2001 Jul; 104(4):486-90. PubMed ID: 11468214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Left ventricular pump function in right ventricular overload.
    Maruyama Y; Ito N; Kinoshita H; Nozaki E; Takishima T
    Jpn Circ J; 1989 Oct; 53(10):1253-9. PubMed ID: 2614873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The concept of afterload mismatch and its implications in the clinical assessment of cardiac contractility.
    Ross J
    Jpn Circ J; 1976 Aug; 40(8):865-75. PubMed ID: 966366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of changes in contractility on the index of myocardial performance in the dysfunctional left ventricle.
    Lavine SJ
    Cardiovasc Ultrasound; 2006 Nov; 4():45. PubMed ID: 17109761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of early postoperative volume loading on left ventricular systolic function (including left ventricular ejection fraction determined by myocardial marker) after myocardial revascularization.
    Miller DC; Daughters GT; Derby GC; Mitchell RS; Ingels NB; Stinson EB; Alderman EL
    Circulation; 1985 Sep; 72(3 Pt 2):II207-15. PubMed ID: 3896554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of stroke volume and velocity of ejection on end-systolic pressure of canine left ventricle. End-systolic volume clamping.
    Suga H; Yamakoshi K
    Circ Res; 1977 May; 40(5):445-50. PubMed ID: 856481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of altering filling pattern on diastolic pressure-volume curve.
    Fraites TJ; Saeki A; Kass DA
    Circulation; 1997 Dec; 96(12):4408-14. PubMed ID: 9416911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Indirect measurement of end-diastolic pressure-volume relation in the in situ canine heart.
    Asou T
    Fukuoka Igaku Zasshi; 1998 May; 89(5):145-57. PubMed ID: 9642874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Left ventricular ejection activation in the in situ heart.
    Igarashi Y; Cheng CP; Little WC
    Am J Physiol; 1991 May; 260(5 Pt 2):H1495-500. PubMed ID: 2035671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Delayed end ejection increases isovolumic ventricular relaxation rate in isolated perfused canine hearts.
    Hori M; Kitakaze M; Ishida Y; Fukunami M; Kitabatake A; Inoue M; Kamada T; Yue DT
    Circ Res; 1991 Jan; 68(1):300-8. PubMed ID: 1984870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of effects of dihydropyridine calcium antagonists on left ventricular systolic and diastolic performance.
    Cheng CP; Noda T; Nordlander M; Ohno M; Little WC
    J Pharmacol Exp Ther; 1994 Mar; 268(3):1232-41. PubMed ID: 8138936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Right ventricular distension alters monophasic action potential duration during pulmonary arterial occlusion in anaesthetised lambs: evidence for arrhythmogenic right ventricular mechanoelectrical feedback.
    Greve G; Lab MJ; Chen R; Barron D; White PA; Redington AN; Penny DJ
    Exp Physiol; 2001 Sep; 86(5):651-7. PubMed ID: 11571494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts.
    Franz MR; Burkhoff D; Yue DT; Sagawa K
    Cardiovasc Res; 1989 Mar; 23(3):213-23. PubMed ID: 2590905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal stroke volume in left-ventricular ejection.
    Hämäläinen JJ
    IEEE Trans Biomed Eng; 1989 Feb; 36(2):172-82. PubMed ID: 2917763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased afterload intensifies asynchronous wall motion and impairs ventricular relaxation.
    Miura T; Bhargava V; Guth BD; Sunnerhagen KS; Miyazaki S; Indolfi C; Peterson KL
    J Appl Physiol (1985); 1993 Jul; 75(1):389-96. PubMed ID: 8376290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of afterload on uniformity of segment shortening in feline left ventricles. Importance of cross-fibre contraction.
    Hexeberg E; Birkeland S
    Acta Physiol Scand; 1993 Oct; 149(2):153-6. PubMed ID: 8266804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global and regional left ventricular systolic performance in the in situ ejecting canine heart. Importance of the mitral apparatus.
    Sarris GE; Fann JI; Niczyporuk MA; Derby GC; Handen CE; Miller DC
    Circulation; 1989 Sep; 80(3 Pt 1):I24-42. PubMed ID: 2766532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Afterload sensitivity of nonlinear end-systolic pressure-volume relation vs preload recruitable stroke work in conscious dogs.
    McClain LC; Wright LD; Bose RK; Spratt JA; Maier GW
    J Surg Res; 1998 Feb; 75(1):6-17. PubMed ID: 9614850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of reduced resistive afterload on left ventricular pressure-volume relationship.
    Ducas J; Schick U; Girling L; Prewitt RM
    Am J Physiol; 1985 Feb; 248(2 Pt 2):H163-9. PubMed ID: 3970220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contractile strength and mechanical efficiency of left ventricle are enhanced by physiological afterload.
    Burkhoff D; de Tombe PP; Hunter WC; Kass DA
    Am J Physiol; 1991 Feb; 260(2 Pt 2):H569-78. PubMed ID: 1996700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.