BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8448148)

  • 1. Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin A biosynthesis.
    Andersen JF; Tatsuta K; Gunji H; Ishiyama T; Hutchinson CR
    Biochemistry; 1993 Mar; 32(8):1905-13. PubMed ID: 8448148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Saccharopolyspora erythraea cytochrome P-450 genes and enzymes, including 6-deoxyerythronolide B hydroxylase.
    Andersen JF; Hutchinson CR
    J Bacteriol; 1992 Feb; 174(3):725-35. PubMed ID: 1732208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrolide antibiotic biosynthesis: isolation and properties of two forms of 6-deoxyerythronolide B hydroxylase from Saccharopolyspora erythraea (Streptomyces erythreus).
    Shafiee A; Hutchinson CR
    Biochemistry; 1987 Sep; 26(19):6204-10. PubMed ID: 2446657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and reconstitution of the electron transport components for 6-deoxyerythronolide B hydroxylase, a cytochrome P-450 enzyme of macrolide antibiotic (erythromycin) biosynthesis.
    Shafiee A; Hutchinson CR
    J Bacteriol; 1988 Apr; 170(4):1548-53. PubMed ID: 3127376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea.
    Weber JM; Leung JO; Swanson SJ; Idler KB; McAlpine JB
    Science; 1991 Apr; 252(5002):114-7. PubMed ID: 2011746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An A245T mutation conveys on cytochrome P450eryF the ability to oxidize alternative substrates.
    Xiang H; Tschirret-Guth RA; Ortiz De Montellano PR
    J Biol Chem; 2000 Nov; 275(46):35999-6006. PubMed ID: 10956654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of cytochrome P450eryF involved in erythromycin biosynthesis.
    Cupp-Vickery JR; Poulos TL
    Nat Struct Biol; 1995 Feb; 2(2):144-53. PubMed ID: 7749919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overproduction and characterization of the erythromycin C-12 hydroxylase, EryK.
    Lambalot RH; Cane DE; Aparicio JJ; Katz L
    Biochemistry; 1995 Feb; 34(6):1858-66. PubMed ID: 7849045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary crystallographic analysis of an enzyme involved in erythromycin biosynthesis: cytochrome P450eryF.
    Cupp-Vickery JR; Li H; Poulos TL
    Proteins; 1994 Oct; 20(2):197-201. PubMed ID: 7846029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of 6-deoxyerythronolide B in a normal strain of Streptomyces erythreus and hydroxylation at carbon 6 of the erythranolide ring system by a soluble noninduced cell-free enzyme system.
    Corcoran JW; Vygantas AM
    Biochemistry; 1982 Jan; 21(2):263-9. PubMed ID: 7074013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 7-Benzyloxyquinoline oxidation by P450eryF A245T: finding of a new fluorescent substrate probe.
    Khan KK; Halpert JR
    Chem Res Toxicol; 2002 Jun; 15(6):806-14. PubMed ID: 12067248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of serine-246 in cytochrome P450eryF-catalyzed hydroxylation of 6-deoxyerythronolide B.
    Kim C; Kim H; Han O
    Biosci Biotechnol Biochem; 2001 Apr; 65(4):752-7. PubMed ID: 11388449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a Saccharopolyspora erythraea gene required for the final hydroxylation step in erythromycin biosynthesis.
    Stassi D; Donadio S; Staver MJ; Katz L
    J Bacteriol; 1993 Jan; 175(1):182-9. PubMed ID: 8416893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of mutations in substrate recognition site 1 of cytochrome P450 2C2 on lauric acid and progesterone hydroxylation.
    Straub P; Lloyd M; Johnson EF; Kemper B
    Biochemistry; 1994 Jul; 33(26):8029-34. PubMed ID: 8025107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and molecular analysis of 5-epiaristolochene 1,3-dihydroxylase, a cytochrome P450 enzyme catalyzing successive hydroxylations of sesquiterpenes.
    Takahashi S; Zhao Y; O'Maille PE; Greenhagen BT; Noel JP; Coates RM; Chappell J
    J Biol Chem; 2005 Feb; 280(5):3686-96. PubMed ID: 15522862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenylalanine and tryptophan scanning mutagenesis of CYP3A4 substrate recognition site residues and effect on substrate oxidation and cooperativity.
    Domanski TL; He YA; Khan KK; Roussel F; Wang Q; Halpert JR
    Biochemistry; 2001 Aug; 40(34):10150-60. PubMed ID: 11513592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
    Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW
    Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A specific cytochrome P450 hydroxylase in herboxidiene biosynthesis.
    Yu D; Xu F; Shao L; Zhan J
    Bioorg Med Chem Lett; 2014 Sep; 24(18):4511-4514. PubMed ID: 25139567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species: cDNA isolation, characterization, and functional expression of (-)-4S-limonene-3-hydroxylase and (-)-4S-limonene-6-hydroxylase.
    Lupien S; Karp F; Wildung M; Croteau R
    Arch Biochem Biophys; 1999 Aug; 368(1):181-92. PubMed ID: 10415126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7.
    Murataliev MB; Trinh LN; Moser LV; Bates RB; Feyereisen R; Walker FA
    Biochemistry; 2004 Feb; 43(7):1771-80. PubMed ID: 14967018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.