BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8448156)

  • 1. Intrinsic tryptophan fluorescence of rat liver elongation factor eEF-2 to monitor the interaction with guanylic and adenylic nucleotides and related conformational changes.
    Sontag B; Reboud AM; Divita G; Di Pietro A; Guillot D; Reboud JP
    Biochemistry; 1993 Mar; 32(8):1976-80. PubMed ID: 8448156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a second nucleotide binding site in rat elongation factor eEF-2 specific for adenylic nucleotides.
    Gonzalo P; Sontag B; Lavergne JP; Jault JM; Reboud JP
    Biochemistry; 2000 Nov; 39(44):13558-64. PubMed ID: 11063593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GTP binding to elongation factor eEF-2 unmasks a tryptophan residue required for biological activity.
    Guillot D; Penin F; Di Pietro A; Sontag B; Lavergne JP; Reboud JP
    J Biol Chem; 1993 Oct; 268(28):20911-6. PubMed ID: 8407925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of phosphorylated elongation factor EF-2 with nucleotides and ribosomes.
    Dumont-Miscopein A; Lavergne JP; Guillot D; Sontag B; Reboud JP
    FEBS Lett; 1994 Dec; 356(2-3):283-6. PubMed ID: 7805855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic fluorescence of elongation factor Tu in its complexes with GDP and elongation factor Ts.
    Jameson DM; Gratton E; Eccleston JF
    Biochemistry; 1987 Jun; 26(13):3894-901. PubMed ID: 3651421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoaffinity labeling of elongation factor-2 with 8-azido derivatives of GTP and ATP.
    Guillot D; Vard C; Reboud JP
    Eur J Biochem; 1996 Feb; 236(1):149-54. PubMed ID: 8617259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of elongation factor 2 (EF-2) with guanine nucleotides and ribosomes. Binding of periodate-oxidized guanine nucleotides to EF-2.
    Nurten R; Bermek E
    Eur J Biochem; 1980 Feb; 103(3):551-5. PubMed ID: 6244163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic tryptophan fluorescence of bovine liver adenosine kinase, characterization of ligand binding sites and conformational changes.
    Elalaoui A; Divita G; Maury G; Imbach JL; Goody RS
    Eur J Biochem; 1994 Apr; 221(2):839-46. PubMed ID: 8174564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondrial F1-ATPase. A powerful probe for phosphate and nucleotide interactions.
    Divita G; Di Pietro A; Deléage G; Roux B; Gautheron DC
    Biochemistry; 1991 Apr; 30(13):3256-62. PubMed ID: 1826214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ADP-ribosylation and phosphorylation on the interaction of elongation factor 2 with guanylic nucleotides.
    Marzouki A; Sontag B; Lavergne JP; Vidonne C; Reboud JP; Reboud AM
    Biochimie; 1991; 73(7-8):1151-6. PubMed ID: 1742357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential nucleotide binding to catalytic and noncatalytic sites and related conformational changes involving alpha/beta-subunit interactions as monitored by sensitive intrinsic fluorescence in Schizosaccharomyces pombe mitochondrial F1.
    Divita G; Di Pietro A; Roux B; Gautheron DC
    Biochemistry; 1992 Jun; 31(25):5791-8. PubMed ID: 1319203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative steady-state fluorescence studies of cytosolic rat liver (GTP), Saccharomyces cerevisiae (ATP) and Escherichia coli (ATP) phospho enol pyruvate carboxykinases.
    Encinas MV; Rojas MC; Goldie H; Cardemil E
    Biochim Biophys Acta; 1993 Mar; 1162(1-2):195-202. PubMed ID: 8448184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein synthesis in artemia salina. Eucaryotic elongation factor eEF-Ts is a transphosphorylase.
    Roobol K; Möller W
    Mol Biol Rep; 1981 Aug; 7(4):197-202. PubMed ID: 6270547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenine and guanine nucleotide metabolism during platelet storage at 22 degrees C.
    Edenbrandt CM; Murphy S
    Blood; 1990 Nov; 76(9):1884-92. PubMed ID: 2224137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular compartmentation of guanine nucleotides and functional relationships between the adenine and guanine nucleotide systems in isolated hepatocytes.
    Kleineke J; Düls C; Söling HD
    FEBS Lett; 1979 Nov; 107(1):198-202. PubMed ID: 499541
    [No Abstract]   [Full Text] [Related]  

  • 16. Equilibrium measurements of the interactions of guanine nucleotides with Escherichia coli elongation factor G and the ribosome.
    Baca OG; Rohrbach MS; Bodley JW
    Biochemistry; 1976 Oct; 15(21):4570-4. PubMed ID: 788779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional groups of elongation factor 2 involved in interactions with guanosine nucleotides and ribosomes.
    Nurten R; Aktar NB; Bermek E
    FEBS Lett; 1983 Apr; 154(2):391-4. PubMed ID: 6832378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further studies on the interaction of the polypeptide chain elongation factor G with guanine nucleotides.
    Arai N; Arai K; Kaziro Y
    J Biochem; 1977 Sep; 82(3):687-94. PubMed ID: 914807
    [No Abstract]   [Full Text] [Related]  

  • 19. Conformational effects of nucleotide exchange in ras p21 proteins as studied by fluorescence spectroscopy.
    Skelly JV; Suter DA; Kuroda R; Neidle S; Hancock JF; Drake A
    FEBS Lett; 1990 Mar; 262(1):127-30. PubMed ID: 2108052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the N-terminal and C-terminal domains of elongation factor G on formation of complexes with guanyl nucleotides.
    Kashparov IA; Semisotnov GV; Alakhov YB
    Eur J Biochem; 1981 Aug; 118(2):417-21. PubMed ID: 7285933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.