These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8448372)

  • 1. Supported PCR: an efficient procedure to amplify sequences flanking a known DNA segment.
    Rudenko GN; Rommens CM; Nijkamp HJ; Hille J
    Plant Mol Biol; 1993 Feb; 21(4):723-8. PubMed ID: 8448372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid isolation of flanking genomic DNA using biotin-RAGE, a variation of single-sided polymerase chain reaction.
    Bloomquist BT; Johnson RC; Mains RE
    DNA Cell Biol; 1992 Dec; 11(10):791-7. PubMed ID: 1457047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a simplified single-site PCR to facilitate cloning of genomic DNA sequences flanking a transgene integration site.
    MacGregor GR; Overbeek PA
    PCR Methods Appl; 1991 Nov; 1(2):129-35. PubMed ID: 1842930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capture PCR: efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA.
    Lagerström M; Parik J; Malmgren H; Stewart J; Pettersson U; Landegren U
    PCR Methods Appl; 1991 Nov; 1(2):111-9. PubMed ID: 1842928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplification and sequence analysis of DNA flanking integrated proviruses by a simple two-step polymerase chain reaction method.
    Sørensen AB; Duch M; Jørgensen P; Pedersen FS
    J Virol; 1993 Dec; 67(12):7118-24. PubMed ID: 8230434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple and efficient amplification method of DNA with unknown sequences and its application to microdissection/microcloning.
    Jinno Y; Harada N; Yoshiura K; Ohta T; Tohma T; Hirota T; Tsukamoto K; Deng HX; Oshimura M; Niikawa N
    J Biochem; 1992 Jul; 112(1):75-80. PubMed ID: 1429512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning of deleted sequences (CODE): A genomic subtraction method for enriching and cloning deleted sequences.
    Li J; Wang F; Kashuba V; Wahlestedt C; Zabarovsky ER
    Biotechniques; 2001 Oct; 31(4):788, 790, 792-3. PubMed ID: 11680709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chased PCR: A modified inverse PCR technique to characterize flanking regions of AT-rich DNA fragments.
    Shams-Eldin H; Debierre-Grockiego F; Schwarz RT
    J Mol Microbiol Biotechnol; 2003; 6(1):1-5. PubMed ID: 14593247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid amplification of genomic ends (RAGE) as a simple method to clone flanking genomic DNA.
    Cormack RS; Somssich IE
    Gene; 1997 Jul; 194(2):273-6. PubMed ID: 9272870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quick method to estimate the T-DNA copy number in transgenic plants at an early stage after transformation, using inverse PCR.
    Does MP; Dekker BM; de Groot MJ; Offringa R
    Plant Mol Biol; 1991 Jul; 17(1):151-3. PubMed ID: 1868218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligation-anchored PCR: a simple amplification technique with single-sided specificity.
    Troutt AB; McHeyzer-Williams MG; Pulendran B; Nossal GJ
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9823-5. PubMed ID: 1409706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for difference cloning: gene amplification following subtractive hybridization.
    Wieland I; Bolger G; Asouline G; Wigler M
    Proc Natl Acad Sci U S A; 1990 Apr; 87(7):2720-4. PubMed ID: 2138783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning.
    Wang Z; Ye S; Li J; Zheng B; Bao M; Ning G
    BMC Biotechnol; 2011 Nov; 11():109. PubMed ID: 22093809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and direct sequencing of plant promoters using primer-adapter mediated PCR on DNA coupled to a magnetic solid phase.
    Espelund M; Jakobsen KS
    Biotechniques; 1992 Jul; 13(1):74-81. PubMed ID: 1503778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse polymerase chain reaction. An efficient approach to cloning cDNA ends.
    Huang SH
    Mol Biotechnol; 1994 Aug; 2(1):15-22. PubMed ID: 7866865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reliable amplification technique for the characterization of genomic DNA sequences flanking insertion sequences.
    Prod'hom G; Lagier B; Pelicic V; Hance AJ; Gicquel B; Guilhot C
    FEMS Microbiol Lett; 1998 Jan; 158(1):75-81. PubMed ID: 9453159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic subtraction for cloning DNA corresponding to deletion mutations.
    Straus D; Ausubel FM
    Proc Natl Acad Sci U S A; 1990 Mar; 87(5):1889-93. PubMed ID: 2408039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplification of genomic sequences flanking T-DNA insertions by thermal asymmetric interlaced polymerase chain reaction.
    Liu YG; Chen Y; Zhang Q
    Methods Mol Biol; 2005; 286():341-8. PubMed ID: 15310932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligation-independent cloning of PCR products (LIC-PCR).
    Aslanidis C; de Jong PJ
    Nucleic Acids Res; 1990 Oct; 18(20):6069-74. PubMed ID: 2235490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid isolation of desired sequences from lone linker PCR amplified cDNA mixtures: application to identification and recovery of expressed sequences in cloned genomic DNA.
    Abe K
    Mamm Genome; 1992; 2(4):252-9. PubMed ID: 1543917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.