BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 8448810)

  • 1. Biological and toxicological consequences of quinone methide formation.
    Thompson DC; Thompson JA; Sugumaran M; Moldéus P
    Chem Biol Interact; 1993 Feb; 86(2):129-62. PubMed ID: 8448810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic and structural requirements for metabolic activation of butylated hydroxytoluene analogs to their quinone methides, intermediates responsible for lung toxicity in mice.
    Yamamoto K; Kato S; Tajima K; Mizutani T
    Biol Pharm Bull; 1997 May; 20(5):571-3. PubMed ID: 9178942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkylation of 2'-deoxynucleosides and DNA by quinone methides derived from 2,6-di-tert-butyl-4-methylphenol.
    Lewis MA; Yoerg DG; Bolton JL; Thompson JA
    Chem Res Toxicol; 1996 Dec; 9(8):1368-74. PubMed ID: 8951242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of 4-alkyl substituents on the formation and reactivity of 2-methoxy-quinone methides: evidence that extended pi-conjugation dramatically stabilizes the quinone methide formed from eugenol.
    Bolton JL; Comeau E; Vukomanovic V
    Chem Biol Interact; 1995 Apr; 95(3):279-90. PubMed ID: 7728898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of quinone methide in the in vitro toxicity of the skin tumor promoter butylated hydroxytoluene hydroperoxide.
    Guyton KZ; Thompson JA; Kensler TW
    Chem Res Toxicol; 1993; 6(5):731-8. PubMed ID: 8292753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies using structural analogs and inbred strain differences to support a role for quinone methide metabolites of butylated hydroxytoluene (BHT) in mouse lung tumor promotion.
    Thompson JA; Carlson TJ; Sun Y; Dwyer-Nield LD; Malkinson AM
    Toxicology; 2001 Mar; 160(1-3):197-205. PubMed ID: 11246140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides.
    Fan PW; Zhang F; Bolton JL
    Chem Res Toxicol; 2000 Jan; 13(1):45-52. PubMed ID: 10649966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of eugenol to form DNA adducts and 8-hydroxy-2'-deoxyguanosine: role of quinone methide derivative in DNA adduct formation.
    Bodell WJ; Ye Q; Pathak DN; Pongracz K
    Carcinogenesis; 1998 Mar; 19(3):437-43. PubMed ID: 9525278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activity of quinone methides derived from the tumor promoter butylated hydroxytoluene in HepG2 cells.
    Desjardins JP; Beard SE; Mapoles JE; Gee P; Thompson JA
    Cancer Lett; 1998 Sep; 131(2):201-7. PubMed ID: 9851254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical applications of quinone-containing alkylating agents.
    Begleiter A
    Front Biosci; 2000 Nov; 5():E153-71. PubMed ID: 11056078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of a new quinone methide intermediate during the oxidative transformation of 3,4-dihydroxyphenylacetic acids: implication for eumelanin biosynthesis.
    Sugumaran M; Duggaraju P; Jayachandran E; Kirk KL
    Arch Biochem Biophys; 1999 Nov; 371(1):98-106. PubMed ID: 10525294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of quinone methide reactivity on the alkylation of thiol and amino groups in proteins: studies utilizing amino acid and peptide models.
    Bolton JL; Turnipseed SB; Thompson JA
    Chem Biol Interact; 1997 Nov; 107(3):185-200. PubMed ID: 9448752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin sensitization to eugenol and isoeugenol in mice: possible metabolic pathways involving ortho-quinone and quinone methide intermediates.
    Bertrand F; Basketter DA; Roberts DW; Lepoittevin JP
    Chem Res Toxicol; 1997 Mar; 10(3):335-43. PubMed ID: 9084914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syntheses and absolute stereochemistries of UPA0043 and UPA0044, cytotoxic antibiotics having a p-quinone-methide structure.
    Takao KI; Sasaki T; Kozaki T; Yanagisawa Y; Tadano KI; Kawashima A; Shinonaga H
    Org Lett; 2001 Dec; 3(26):4291-4. PubMed ID: 11784200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New regulators of melanin biosynthesis and the autodestruction of melanoma cells.
    Pawelek J; Körner A; Bergstrom A; Bologna J
    Nature; 1980 Aug; 286(5773):617-9. PubMed ID: 6772968
    [No Abstract]   [Full Text] [Related]  

  • 16. Oxidation of butylated hydroxytoluene to toxic metabolites. Factors influencing hydroxylation and quinone methide formation by hepatic and pulmonary microsomes.
    Bolton JL; Thompson JA
    Drug Metab Dispos; 1991; 19(2):467-72. PubMed ID: 1676656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taming reactive phenol tautomers and o-quinone methides with transition metals: a structure-reactivity relationship.
    Amouri H; Le Bras J
    Acc Chem Res; 2002 Jul; 35(7):501-10. PubMed ID: 12118989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity study on the quinone/quinone methide chemistry of flavonoids.
    Awad HM; Boersma MG; Boeren S; van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2001 Apr; 14(4):398-408. PubMed ID: 11304128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regioselectivity and reversibility of the glutathione conjugation of quercetin quinone methide.
    Boersma MG; Vervoort J; Szymusiak H; Lemanska K; Tyrakowska B; Cenas N; Segura-Aguilar J; Rietjens IM
    Chem Res Toxicol; 2000 Mar; 13(3):185-91. PubMed ID: 10725115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinone and quinone methide as transient intermediates involved in the side chain hydroxylation of N-acyldopamine derivatives by soluble enzymes from Manduca sexta cuticle.
    Saul SJ; Dali H; Sugumaran M
    Arch Insect Biochem Physiol; 1991; 16(2):123-38. PubMed ID: 1799673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.