These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
516 related articles for article (PubMed ID: 8449060)
61. Characterization of VO2 kinetics during heavy exercise. Barstow TJ Med Sci Sports Exerc; 1994 Nov; 26(11):1327-34. PubMed ID: 7837952 [TBL] [Abstract][Full Text] [Related]
62. Induced lactacidemia does not affect postexercise O2 consumption. Roth DA; Stanley WC; Brooks GA J Appl Physiol (1985); 1988 Sep; 65(3):1045-9. PubMed ID: 3182473 [TBL] [Abstract][Full Text] [Related]
63. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. Rossiter HB; Kowalchuk JM; Whipp BJ J Appl Physiol (1985); 2006 Mar; 100(3):764-70. PubMed ID: 16282428 [TBL] [Abstract][Full Text] [Related]
64. Oxygen cost and oxygen uptake dynamics and recovery with 1 min of exercise in children and adults. Zanconato S; Cooper DM; Armon Y J Appl Physiol (1985); 1991 Sep; 71(3):993-8. PubMed ID: 1757338 [TBL] [Abstract][Full Text] [Related]
65. Influence of different exercise protocols on functional capacity and symptoms in patients with chronic heart failure. Meyer K; Stengele E; Westbrook S; Beneke R; Schwaibold M; Görnandt L; Lehmann M; Roskamm H Med Sci Sports Exerc; 1996 Sep; 28(9):1081-6. PubMed ID: 8882993 [TBL] [Abstract][Full Text] [Related]
67. Effect of reduced body weight on muscle aerobic capacity in patients with COPD. Palange P; Forte S; Onorati P; Paravati V; Manfredi F; Serra P; Carlone S Chest; 1998 Jul; 114(1):12-8. PubMed ID: 9674441 [TBL] [Abstract][Full Text] [Related]
68. Muscle metabolism, blood lactate and oxygen uptake in steady state exercise at aerobic and anaerobic thresholds. Rusko H; Luhtanen P; Rahkila P; Viitasalo J; Rehunen S; Härkönen M Eur J Appl Physiol Occup Physiol; 1986; 55(2):181-6. PubMed ID: 3699005 [TBL] [Abstract][Full Text] [Related]
69. The anaerobic threshold in chronic heart failure. Relation to blood lactate, ventilatory basis, reproducibility, and response to exercise training. Sullivan MJ; Cobb FR Circulation; 1990 Jan; 81(1 Suppl):II47-58. PubMed ID: 2295152 [TBL] [Abstract][Full Text] [Related]
70. Metabolic alkalosis induced by pre-exercise ingestion of NaHCO3 does not modulate the slow component of VO2 kinetics in humans. Zoładź JA; Duda K; Majerczak J; Domański J; Emmerich J J Physiol Pharmacol; 1997 Jun; 48(2):211-23. PubMed ID: 9223026 [TBL] [Abstract][Full Text] [Related]
71. Assessment of peak oxygen consumption, lactate and ventilatory thresholds and correlation with resting and exercise hemodynamic data in chronic congestive heart failure. Metra M; Raddino R; Dei Cas L; Visioli O Am J Cardiol; 1990 May; 65(16):1127-33. PubMed ID: 2330899 [TBL] [Abstract][Full Text] [Related]
72. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. Medbø JI; Tabata I J Appl Physiol (1985); 1993 Oct; 75(4):1654-60. PubMed ID: 8282617 [TBL] [Abstract][Full Text] [Related]
73. Plasma hypoxanthine and ammonia in humans during prolonged exercise. Sahlin K; Tonkonogi M; Söderlund K Eur J Appl Physiol Occup Physiol; 1999 Oct; 80(5):417-22. PubMed ID: 10502075 [TBL] [Abstract][Full Text] [Related]
74. Prior heavy exercise eliminates VO2 slow component and reduces efficiency during submaximal exercise in humans. Sahlin K; Sørensen JB; Gladden LB; Rossiter HB; Pedersen PK J Physiol; 2005 May; 564(Pt 3):765-73. PubMed ID: 15746165 [TBL] [Abstract][Full Text] [Related]
75. Influence of peripheral arterial occlusive disease on muscular metabolism. Part 1: Changes in lactate, ammonia, and hypoxanthine concentration in femoral blood. Rexroth W; Hageloch W; Isgro F; Koeth T; Manzl G; Weicker H Klin Wochenschr; 1989 Jun; 67(11):576-82. PubMed ID: 2747135 [TBL] [Abstract][Full Text] [Related]
76. Effects of muscle temperature on the VO2 kinetics at the onset of exercise in man. Ishii M; Ferretti G; Cerretelli P Respir Physiol; 1992 Jun; 88(3):343-53. PubMed ID: 1615231 [TBL] [Abstract][Full Text] [Related]
77. Respiratory gas analysis during exercise as a noninvasive measure of lactate concentration in chronic congestive heart failure. Wilson JR; Ferraro N; Weber KT Am J Cardiol; 1983 Jun; 51(10):1639-43. PubMed ID: 6407294 [TBL] [Abstract][Full Text] [Related]
78. Improved ventilation and decreased sympathetic stress in chronic heart failure patients following local endurance training with leg muscles. Gordon A; Tyni-Lenné R; Jansson E; Kaijser L; Theodorsson-Norheim E; Sylvén C J Card Fail; 1997 Mar; 3(1):3-12. PubMed ID: 9110249 [TBL] [Abstract][Full Text] [Related]
79. Delayed VO2 kinetics during ramp exercise: a criterion for cardiopulmonary exercise capacity in chronic heart failure. Meyer K; Schwaibold M; Hajric R; Westbrook S; Ebfeld D; Leyk D; Roskamm H Med Sci Sports Exerc; 1998 May; 30(5):643-8. PubMed ID: 9588603 [TBL] [Abstract][Full Text] [Related]
80. Reduced oxygen uptake increase to work rate increment (DeltaVO2/DeltaWR) is predictable by VO2 response to constant work rate exercise in patients with chronic heart failure. Toyofuku M; Takaki H; Sugimachi M; Kawada T; Goto Y; Sunagawa K Eur J Appl Physiol; 2003 Sep; 90(1-2):76-82. PubMed ID: 12811568 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]