BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 8449060)

  • 61. Characterization of VO2 kinetics during heavy exercise.
    Barstow TJ
    Med Sci Sports Exerc; 1994 Nov; 26(11):1327-34. PubMed ID: 7837952
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Induced lactacidemia does not affect postexercise O2 consumption.
    Roth DA; Stanley WC; Brooks GA
    J Appl Physiol (1985); 1988 Sep; 65(3):1045-9. PubMed ID: 3182473
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise.
    Rossiter HB; Kowalchuk JM; Whipp BJ
    J Appl Physiol (1985); 2006 Mar; 100(3):764-70. PubMed ID: 16282428
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Oxygen cost and oxygen uptake dynamics and recovery with 1 min of exercise in children and adults.
    Zanconato S; Cooper DM; Armon Y
    J Appl Physiol (1985); 1991 Sep; 71(3):993-8. PubMed ID: 1757338
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influence of different exercise protocols on functional capacity and symptoms in patients with chronic heart failure.
    Meyer K; Stengele E; Westbrook S; Beneke R; Schwaibold M; Görnandt L; Lehmann M; Roskamm H
    Med Sci Sports Exerc; 1996 Sep; 28(9):1081-6. PubMed ID: 8882993
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Forearm exercise increases plasma hypoxanthine.
    Patterson VH; Kaiser KK; Brooke MH
    J Neurol Neurosurg Psychiatry; 1982 Jun; 45(6):552-3. PubMed ID: 7119819
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of reduced body weight on muscle aerobic capacity in patients with COPD.
    Palange P; Forte S; Onorati P; Paravati V; Manfredi F; Serra P; Carlone S
    Chest; 1998 Jul; 114(1):12-8. PubMed ID: 9674441
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Muscle metabolism, blood lactate and oxygen uptake in steady state exercise at aerobic and anaerobic thresholds.
    Rusko H; Luhtanen P; Rahkila P; Viitasalo J; Rehunen S; Härkönen M
    Eur J Appl Physiol Occup Physiol; 1986; 55(2):181-6. PubMed ID: 3699005
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The anaerobic threshold in chronic heart failure. Relation to blood lactate, ventilatory basis, reproducibility, and response to exercise training.
    Sullivan MJ; Cobb FR
    Circulation; 1990 Jan; 81(1 Suppl):II47-58. PubMed ID: 2295152
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metabolic alkalosis induced by pre-exercise ingestion of NaHCO3 does not modulate the slow component of VO2 kinetics in humans.
    Zoładź JA; Duda K; Majerczak J; Domański J; Emmerich J
    J Physiol Pharmacol; 1997 Jun; 48(2):211-23. PubMed ID: 9223026
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Assessment of peak oxygen consumption, lactate and ventilatory thresholds and correlation with resting and exercise hemodynamic data in chronic congestive heart failure.
    Metra M; Raddino R; Dei Cas L; Visioli O
    Am J Cardiol; 1990 May; 65(16):1127-33. PubMed ID: 2330899
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling.
    Medbø JI; Tabata I
    J Appl Physiol (1985); 1993 Oct; 75(4):1654-60. PubMed ID: 8282617
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Plasma hypoxanthine and ammonia in humans during prolonged exercise.
    Sahlin K; Tonkonogi M; Söderlund K
    Eur J Appl Physiol Occup Physiol; 1999 Oct; 80(5):417-22. PubMed ID: 10502075
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Prior heavy exercise eliminates VO2 slow component and reduces efficiency during submaximal exercise in humans.
    Sahlin K; Sørensen JB; Gladden LB; Rossiter HB; Pedersen PK
    J Physiol; 2005 May; 564(Pt 3):765-73. PubMed ID: 15746165
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of peripheral arterial occlusive disease on muscular metabolism. Part 1: Changes in lactate, ammonia, and hypoxanthine concentration in femoral blood.
    Rexroth W; Hageloch W; Isgro F; Koeth T; Manzl G; Weicker H
    Klin Wochenschr; 1989 Jun; 67(11):576-82. PubMed ID: 2747135
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of muscle temperature on the VO2 kinetics at the onset of exercise in man.
    Ishii M; Ferretti G; Cerretelli P
    Respir Physiol; 1992 Jun; 88(3):343-53. PubMed ID: 1615231
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Respiratory gas analysis during exercise as a noninvasive measure of lactate concentration in chronic congestive heart failure.
    Wilson JR; Ferraro N; Weber KT
    Am J Cardiol; 1983 Jun; 51(10):1639-43. PubMed ID: 6407294
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Improved ventilation and decreased sympathetic stress in chronic heart failure patients following local endurance training with leg muscles.
    Gordon A; Tyni-Lenné R; Jansson E; Kaijser L; Theodorsson-Norheim E; Sylvén C
    J Card Fail; 1997 Mar; 3(1):3-12. PubMed ID: 9110249
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Delayed VO2 kinetics during ramp exercise: a criterion for cardiopulmonary exercise capacity in chronic heart failure.
    Meyer K; Schwaibold M; Hajric R; Westbrook S; Ebfeld D; Leyk D; Roskamm H
    Med Sci Sports Exerc; 1998 May; 30(5):643-8. PubMed ID: 9588603
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Reduced oxygen uptake increase to work rate increment (DeltaVO2/DeltaWR) is predictable by VO2 response to constant work rate exercise in patients with chronic heart failure.
    Toyofuku M; Takaki H; Sugimachi M; Kawada T; Goto Y; Sunagawa K
    Eur J Appl Physiol; 2003 Sep; 90(1-2):76-82. PubMed ID: 12811568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.