BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8449349)

  • 1. Investigating the function of cytochrome P450 BM-3: a role for the phylogenetically conserved tryptophan residue?
    Munro AW; Malarkey K; Miles JS
    Biochem Soc Trans; 1993 Feb; 21(1):66S. PubMed ID: 8449349
    [No Abstract]   [Full Text] [Related]  

  • 2. Adrenodoxin: the archetype of vertebrate-type [2Fe-2S] cluster ferredoxins.
    Ewen KM; Kleser M; Bernhardt R
    Biochim Biophys Acta; 2011 Jan; 1814(1):111-25. PubMed ID: 20538075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flavocytochrome P450 BM3 substrate selectivity and electron transfer in a model cytochrome P450.
    Munro AW; Noble MA; Ost TW; Green AJ; McLean KJ; Robledo L; Miles CS; Murdoch J; Chapman SK
    Subcell Biochem; 2000; 35():297-315. PubMed ID: 11192726
    [No Abstract]   [Full Text] [Related]  

  • 4. Cytochrome P450--redox partner fusion enzymes.
    Munro AW; Girvan HM; McLean KJ
    Biochim Biophys Acta; 2007 Mar; 1770(3):345-59. PubMed ID: 17023115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein engineering of the cytochrome P450 monooxygenase from Bacillus megaterium.
    Urlacher VB; Schmid RD
    Methods Enzymol; 2004; 388():208-24. PubMed ID: 15289074
    [No Abstract]   [Full Text] [Related]  

  • 6. The role of tryptophan 97 of cytochrome P450 BM3 from Bacillus megaterium in catalytic function. Evidence against the 'covalent switching' hypothesis of P-450 electron transfer.
    Munro AW; Malarkey K; McKnight J; Thomson AJ; Kelly SM; Price NC; Lindsay JG; Coggins JR; Miles JS
    Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):423-8. PubMed ID: 7980400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the sugar regions of components of the cytochrome P-450-linked mixed-function oxidase (monooxygenase) system of bovine adrenocortical mitochondria.
    Ichikawa Y; Hiwatashi A
    Biochim Biophys Acta; 1982 Jul; 705(1):82-91. PubMed ID: 6810936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3.
    Govindaraj S; Poulos TL
    Biochemistry; 1995 Sep; 34(35):11221-6. PubMed ID: 7669780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenesis of cytochromes P450cam and b5.
    Sligar SG; Filipovic D; Stayton PS
    Methods Enzymol; 1991; 206():31-49. PubMed ID: 1784217
    [No Abstract]   [Full Text] [Related]  

  • 10. Residue size at position 87 of cytochrome P450 BM-3 determines its stereoselectivity in propylbenzene and 3-chlorostyrene oxidation.
    Li QS; Ogawa J; Schmid RD; Shimizu S
    FEBS Lett; 2001 Nov; 508(2):249-52. PubMed ID: 11718725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fluorescent Readout for the Oxidation State of Electron Transporting Proteins in Cell Free Settings.
    Pochekailov S; Black RR; Chavali VP; Khakhar A; Seelig G
    ACS Synth Biol; 2016 Jul; 5(7):662-71. PubMed ID: 27049848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3.
    Kitazume T; Haines DC; Estabrook RW; Chen B; Peterson JA
    Biochemistry; 2007 Oct; 46(42):11892-901. PubMed ID: 17902705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional saturation mutagenesis as an approach to identification of substrate specificity determinants in cytochrome P450 BM3.
    Munro AW; Coggins JR; Lindsay JG
    Biochem Soc Trans; 1993 Nov; 21(4):409S. PubMed ID: 8131983
    [No Abstract]   [Full Text] [Related]  

  • 15. Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7.
    Murataliev MB; Trinh LN; Moser LV; Bates RB; Feyereisen R; Walker FA
    Biochemistry; 2004 Feb; 43(7):1771-80. PubMed ID: 14967018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of cytochrome P450 BM-3 as a monooxygenase.
    Jun H; Lehe M; Qing S; Dongqiang L; Shanjing Y
    Protein Pept Lett; 2005 May; 12(4):327-31. PubMed ID: 15907176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase.
    Neeli R; Girvan HM; Lawrence A; Warren MJ; Leys D; Scrutton NS; Munro AW
    FEBS Lett; 2005 Oct; 579(25):5582-8. PubMed ID: 16214136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of specifically active recombinant fused enzymes consisting of CYP3A4, NADPH-cytochrome P450 oxidoreductase, and cytochrome b5.
    Inui H; Maeda A; Ohkawa H
    Biochemistry; 2007 Sep; 46(35):10213-21. PubMed ID: 17691855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a cytochrome P450-redox partner electron-transfer complex.
    Sevrioukova IF; Li H; Zhang H; Peterson JA; Poulos TL
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1863-8. PubMed ID: 10051560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase II, that catalyzes direct conversion of flavanones to flavones.
    Akashi T; Fukuchi-Mizutani M; Aoki T; Ueyama Y; Yonekura-Sakakibara K; Tanaka Y; Kusumi T; Ayabe S
    Plant Cell Physiol; 1999 Nov; 40(11):1182-6. PubMed ID: 10635120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.